跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:粘志鴻
研究生(外文):Chih-Hung Nien
論文名稱:未摻雜或鈣摻雜之鈦酸鍶的晶體對稱性與相變化研究
論文名稱(外文):Crystal Symmetry and Phase Transition in Undoped and Ca-Doped SrTiO3 Ceramics
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Hong-Yang Lu
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:377
中文關鍵詞:鈦酸鍶相變化結晶向關係添加劑晶體對稱性
外文關鍵詞:Phase transitionCrystal symmetryAdditiveOrientation relationshipsSrTiO3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
未摻雜之鈦酸鍶陶瓷微結構分析做了完整之解析。研究中發現在 Sr/Ti 大於1時的鈦酸鍶粉末燒結過後,有第二相 (Ruddlesden-Popper phase) 產生。在 X 光繞射分析、掃描式電子顯微鏡 (SEM)與穿透式電子顯微鏡 (TEM) 的配合觀察,其中選區繞射 (selected area diffraction patterns, SADP) 之結果可得知母相鈦酸鍶與第二相 (Ruddlesden-Popper phase) 間的結晶向關係,計算後可列出兩相間的 matrix 關係列表。兩相介面的微結構觀察部分,發現鈦酸鍶 (001)ST 平面與第二相之 (001)RP2 共用,並且此平面維持彈性應變。此外,對於第二相 (Ruddlesden-Popper phase) 爭論已久的疊差 (stacking fault),於 TEM 下觀察得到其為 α fringe,並且其位移向量 R = 1/2 <111> ST。
鈣離子添加劑對於鈦酸鍶之研究部分,實驗中利用 LCR 4294a 進行電性量測,並使用 X 光繞射分析、拉曼光譜分析、掃描式電子顯微鏡 (SEM)、穿透式電子顯微鏡 (TEM) 觀察微結構發展。吾人發現其因化學成分中鈣含量分布不均勻,所直接影響到的是不同鈣含量的晶粒擁有不同的相結構。在光集束電子繞射圖 (CBED) 之實驗結果顯示,當鈣含量為 26 at.% 時,晶體結構為正方相 (I4/mcm) ,當鈣含量為 31 at.% 時則為斜方相 (Pbnm)。 利用 Diffracplus-TOPAS® 系統進行凝合計算,結果顯示其試片為正方相 (I4/mcm) 與斜方相 (Pbnm) 以 4:1 之比例存在之兩相混合結構。此外,從相變化產生的微結構變化,吾人從中推論相變化途徑由高溫至低溫過程中應為 C-Pm3m → T-I4/mcm → O-Pbnm。
The crystalline phase mixture and microstructure of SrO-excess SrTiO3 powder sintered at 1350oC/4 h is analyzed using X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM). Second phases represented by Ruddlesden-Popper Sr3Ti2O7 (RP2) and Sr4Ti3O10 (RP3) coexist with SrTiO3 (ST), consistent with the SrO-TiO2 phase equilibrium diagram. Some ST grains contain inter-grown RP2 lamellae which permits analysis of the ST-RP2 interface. The ST-RP2 boundary shared by (001)ST and (001)RP2, although containing a lattice mismatch, is accommodated by long range elastic strain. The crystallographic orientation relationships of ST and RP2 at the interface are determined by selected area diffraction patterns (SADP) and described by transformation matrices. The crystallographic shear structure across the ST-RP boundary exhibiting the characteristic α-fringe pattern can be represented by a fault vector R = 1/2<111>ST.
X-ray diffractometry (XRD) and Rietveld refinement combined with transmission electron microscopy (TEM), energy-dispersive spectrometry (EDS) and convergent beam electron diffraction (CBED) techniques are used to analyze crystalline phases and their symmetry in Sr0.65Ca0.35TiO3 (SCT35 with x = 0.35) sintered ceramic. The tetragonal (T)- and orthorhombic (O)-phase crystalline mixture at a ratio of approximately 4:1 is found in sintered Sr0.65Ca0.35O3.
Adopting the Buxton-Tanaka-Champness CBED procedures and examining the Gjǿnnes and Moodie (GM) lines enable determining the crystal symmetry to 4/mmm point group and I4/mcm space group for a grain with x = 0.26, and mmm point group and Pbnm space group for a grain with x = 0.31. The paraelectric C-Pm3m → antiferrodistortive T-I4/mcm → antiferroelectric O-Pbnm transition sequence for SCT upon cooling is confirmed, only that for x = 0.26 it stops at the T-phase at room temperature. The discrepancy in Ca-content is accounted for by chemical inhomogeneity in the initial powder prepared via mixed oxides route. The PE C-Pm3m → AFD T-I4/mcm → AFE O-Pbnm transition sequence for SCT upon cooling holds true, but with leaner Ca-content, e.g., x = 0.26, it only arrives at AFD T-I4/mcm.
摘要 I
英文摘要 III
目錄 V
圖目錄 X
表目錄 XXXI
第一章 前言 1
第二章 文獻回顧 3
2.1 鈣鈦礦結構與特性 3
2.2 鈦酸鍶的相變化 6
2.3 Ruddlesden-Popper Phase 9
2.3.2 Ruddlesden-Popper Phase 的面缺陷 13
2.3.3 Ruddlesden-Popper Phase 與鈦酸鍶 (SrTiO3) 之結晶向關係 17
2.4 量子順電性陶瓷 21
2.4.1 古典強電性理論 21
2.4.2 極化與介電常數特性 24
2.4.3 介穩態與量子力學效應 27
2.5 摻雜添加劑之效應 33
2.5.1 殼核結構 (core-shell structure) 33
2.5.2擴散型相變化 (diffuse phase transion, D.P.T.) 40
2.5.3 極化的奈米晶域 (polar nano-region) 44
2.6 同價陽離子添加劑於鈦酸鍶之效應 52
2.6.1 鈦酸鈣摻雜鈦酸鍶之影響 54
2.6.2 相變化引起之晶域結構 73
2.7 斜方晶系的空間群 (space group) 變化 85
2.8 光集束電子繞射圖 (convergent beam electron diffraction) 91
2.8.1 光集束電子繞射圖之原理 91
2.8.2光集束電子繞射圖之種類 96
2.8.3 Gjǿnnes and Moodie (GM) lines 101
第三章 實驗步驟 108
3.1 試片製作 108
3.1.1 原始粉末 108
3.1.2 試片製程 111
3.2 介電性質與溫度變化關係量測 114
3.2.1 整體儀器系統組裝 114
3.2.2 電性量測試片製作 120
3.3 密度量測 122
3.4 X-光繞射分析 (XRD) 123
3.4.1 結晶相分析 123
3.4.2 晶格常數量測 124
3.4.3 Rietveld Refinement 之 Diffracplus-TOPAS 系統 126
3.5 拉曼光譜儀 129
3.6 光學顯微鏡 (Optical Microscope) 130
3.7 掃描式電子顯微鏡 (Scanning Electron Microscopy) 131
3.8 穿透式電子顯微鏡之試片備製 133
3.9 穿透式電子顯微鏡 (Transmission Electron Microscopy) 135
3.9.1 光集束電子繞射圖於點群 (point group) 之解析 136
3.9.2 光集束電子繞射圖於空間群 (space group) 之解析 149
第四章 實驗結果 153
4.1 鈦酸鍶 (SrTiO3) 與 Ruddlesden-Popper結晶向關係 153
4.1.1 X-ray 繞射分析 153
4.1.2 掃描式電子顯微鏡 (SEM) 觀察 160
4.1.2.1 TEM下晶粒形貌觀察 160
4.1.2.2 EDS 定性、定量分析 163
4.1.3 穿透式電子顯微鏡 (TEM) 觀察 165
4.1.3.1 TEM下晶粒形貌觀察 165
4.1.3.2 HR 觀察 166
4.1.3.3 沿 SrTiO3 (001) Kikuchi line tilting 之選區繞射 (SADP) 分析 169
4.1.3.4 Sr3Ti2O7 (116)、(211) 與SrTiO3 之結晶向關係判斷 173
4.2 Ruddlesden-Popper phase的疊差 182
4.3 SrTiO3 與 Ruddlesden-Popper phase界面差排 186
4.4 Sr0.65Ca0.35TiO3 之介電性質 190
4.5 Sr0.65Ca0.35TiO3 之 X-ray 繞射分析 192
4.6 X-ray 繞射光譜於 Rietveld Refinement 結果 195
4.7 Sr0.65Ca0.35TiO3 之拉曼光譜分析 200
4.8 Sr0.65Ca0.35TiO3 之掃描式電子顯微鏡觀察 202
4.9 Sr0.65Ca0.35TiO3 之穿透式電子顯微鏡觀察 206
4.10 Sr0.65Ca0.35TiO3 於穿透式電子顯微鏡之晶粒觀察與化學分析 206
4.10.1 Sr1-xCaxTiO3 (x = 0.26) 之 grain I 觀察 206
4.10.2 Sr1-xCaxTiO3 (x = 0.31) 之 grain II 觀察 210
4.11 光集束電子繞射圖之點群分析 212
4.11.1 Sr0.74Ca0.26TiO3 (grain I) 之點群分析 212
4.11.2 Sr0.69Ca0.31TiO3 (grain II) 之點群分析 232
4.12 光集束電子繞射圖之空間群分析 251
4.12.1 Sr0.74Ca0.26TiO3 之空間群分析 251
4.12.2 Sr0.69Ca0.31TiO3 之空間群分析 255
4.13 Sr0.74Ca0.26TiO3 之相變化衍生微結構變化觀察 259
4.14 Sr0.69Ca0.31TiO3 之相變化衍生微結構變化觀察 266
第五章 結果討論 272
5.1 鈦酸鍶 (SrTiO3) 與 Ruddlesden-Popper結晶向關係 272
5.2 Ruddlesden-Popper phase的疊差 277
5.3 鈣摻雜之鈦酸鍶電性與相結構關係 280
5.4 鈣摻雜之鈦酸鍶試片中產生的不均勻現象 281
5.5 光集束電子繞射圖之模擬對照 282
5.6 鈣摻雜之鈦酸鍶試片中之混合相討論 288
5.7 鈣摻雜之鈦酸鍶試片之相變化討論 297
第六章 結論 303
第七章 未來研究方向 304
參考文獻 306
附錄 319
[1] R. H. Mitchell, “Perovskites - Modern and ancient,” Almaz Press, Thunder Bay, Ontario, Canada, 2002.

[2] D. Hennings and H. Schreinemacher, “Ca-acceptors in Dielectric Ceramics Sintered in Reducive Atmospheres,” J. Eur. Ceram. Soc., 15 8 795-800 (1995).

[3] D. Hennings, A. Schnell and G. Simon, “Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics,” 65 [11] 539-44 (1982).

[4] L. E.Cross, “Relaxor ferroelectrics,” Ferroelectrics, 76 241-267 (1987).

[5] F. S.Galasso, “Structures and properties of inorganic solids,” Pergamon, Oxford, England, 1970.

[6] G. Shirane, and Y. Yamada, “Lattice-dynamical study of the 110 oK phase transition in SrTiO3,” Phys. Rev. 177 [2] 858–863 (1969).

[7] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Dielectric properties” pp.913-974 in Introduction to ceramics, 2nd Ed., J. Wiley, N. Y., 1976.

[8] F. D.Bloss , “Crystallography and crystal chemistry: An introduction,” Holt, Reinhart and Winston, N. Y., 1971.

[9] A. Kelly, G. W. Groves, and P. Kidd, “Crystallography and Crystal Defects,” pp. 439-46, J. Wiley, N.Y, NY, 2000

[10] S. N. Ruddlesden and P. Popper, “The Compound Sr3Ti2O7 and Its Structure,” Acta Cryst., 11 [2] 54-55 (1958).

[11] T. Riedl, “ELNES Study of Chemical Solution Deposited SrO(SrTiO3) Ruddlesden-Popper Films: Experiment and Simulation,” Ultramicroscopy, 110 [1] 26-32 (2009).

[12] R. J. D. Tilley, “An Electron Microscope Study of Perovskite-Related Oxides in the Sr-Ti-O System,” J. Solid Stat. Chem., 21 [4] 293-301 (1977).

[13] M. A. McCoy, R. W. Grime, and W. E. Lee, “Phase Stability and Interfacial Structure in the SrO-SrTiO3 System,” Philos. Mag. A, 75 [3] 833-46 (1997).

[14] T. Hungria, I. MacLaren, H. Fuess, J. Galy, and A. Castro, “HREM Studies of Intergrowths in Sr2(Srn-2Ti3nO3n+1) Ruddlesden-Popper Phases Synthesized by Mechanochemical Activation,” Mater. Lett., 62 [17-18] 3095-98 (2008).

[15] S. Sturm and A. Recnik, “Formation of Ruddlesden–Popper faults and polytype phases in SrO-doped SrTiO3,” J. Mater. Res., 15 [10] 1231-39 (2000)

[16] J. W. Edington, “Practional Electron Microscopy in Materials Science,” pp. 109-204, N. V. Philips, Gloeilampenfabrieken, Eindhoven, The Netherlands, 1976

[17] J. Singleton, “Band theory and electronic properties of solids,” 2ThED., OUP, 2001

[18] C. Park and R. I. Snyder, “Perovskite stacking in the structures of the high temperature cuprate superconductors,” Appl. supercon., 3 [1-3] 73-83 (1995).

[19] S. Sturm, “Atomic-scale structure and compositional analyses of Ruddlesden–Popper planar faults in AO – excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics,” J. Mater. Res., 24 [8] 2596-2604 (2009).

[20] D. A. Freedman and T. A. Arias, “Impact of octahedral rotations on Ruddlesden-Popper phases of antiferrodistortive perovskites,” cond. mat., 60 [com] 1-18 (2009).

[21] P.L. Wise, I. M. Reaney and W. E. Lee, “ Tunability of in perovskites and related compounds,” J. Mater. Res., 17 [8] 2033-40 (2002).

[22] S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorny, I. M. Reaney and P. L. Wise, “Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series,” J. Eur. Ceram. Soc., 23 [14] 2639-45 (2003).

[23] S. Amelinckx, and J. V. Landuyt, “Contrast effects at planar interfaces,” pp. 68-112 in Electron Microscopy in Mineralogy. Edited by H. R. Wenk, P. E. Champness, J. M. Christie, J. M. Cowley, A. H. Heuer, G. Thomas, and N. J. Tighe, Springer-Verlag, Berlin, Germany, 1976

[24] Y. F. Liu, Y. N. Lu, M. Xu, L. F. Zhou, and S. Z. Shi, “Topochemical Reaction of SrTiO3 Platelet Crystals Based on Sr3Ti2O7 Platelet Precursor in Molten Salt Process,” Mater. Phys. Chem., 114 [1] 37-42 (2009).

[25] T. Takeuchi, T. Tani, and T. Satoh, “Microcomposite Particles with an Expitaxial Core-Shell Structure,” Solid Stat. Ion., 108 [1] 67-71 (1998).

[26] A. F. Devonshire,”Theory of Barium Titanate-part I” Phil.Mag., 40 [com] 1043-63 (1949).

[27] Roland and S. Strawn, ”Investigation and Application of PLZT ferroelectric ceramic” Ph.D. Thesis [1976] Arizona state university.

[28] T. Malis and H. Gleiter,” Investigation of the structure of Ferroelectric Domain boundaries by Transmission Electron Microscopy,” J. Appl. Phys., 47 [12] 5195-5200 (1976)

[29] A. J. Moulson and J. M. Herbert, “Electroceramics–Materials, properties, applications”, Chapman and Hall, London, 1990

[30] R. Garg, A. Senyshyn, H. Boysen, and R. Ranjan, “Structure of the Noncubic Phase in the Ferroelectric State of Pr-Subsituted SrTiO3,” Phys. Rev. B, 79 [14] 144122-1-6 (2009).

[31] V. V. Lemanov, “Improper Ferroelectrics and What We Know Today About Its Properties,” Ferroelectrics, 265 [11] 1-21 (2002).

[32] J. G. Bednorz and A. Müller, “Sr1-xCaxTiO3: An XY Quantum Ferroelectric with Transition to Randomness,” Phys. Rev. Lett., 52 [25] 2289-92 (1984).

[33] M. Fujimoto, T. Suzuki, Y. Nishi, K. Arai and J. Tanaka, “Calcium-Ion Selective Site Occupation at Ruddlesden-Popper-Type Faults and the Resultant Dielectric Properties of A-site Excess (Sr,Ca)TiO3 Ceramics,” J. Am. Ceram. Soc., 81 [1] 33-40 (1998)

[34] R. Ranjan and D. Pandey, “Novel Features of Sr1-xCaxTiO3 Phase Diagram: Evidence for Competing Antiferroelectric and Ferroelectric Interactions,” Phys. Rev. Lett, 84 [16] 3726-29 (2000).

[35] H. I. Hsiang and F. S. Yen, ”Effect of Crystallite Size on the Ferroelectric Domain Growth of Ultrafine BaTiO3 Powders,” J. Am. Ceram. Soc., 79 [4] 1053-60 (1996)

[36] H. W. Lee, M. S. H. Chu and H. Y. Lu, “Intragranular Voids and dc Degradation in (CaO+MgO)-Codoped BaTiO3 MLCCs,” J. Am. Ceram. Soc., 92 [12] 3037-43 (2009).

[37 ]Y. C. Wu, D. E. McCauley, M. S. H. Chu, and H. Y. Lu, “The {111} Modulated Domains in Tetragonal BaTiO3,” J. Am. Ceram. Soc., 89 [9] 2072-79 (2006).

[38] H. Y. Lu, J. S. Bow, and W. H. Deng, “Core-Shell Structure in ZrO-Modified BaTiO3 Ceramics,” J. Am. Ceram. Soc., 73 [12] 3562-68 (1990).

[39] M. H. Lin and H. Y. Lu, “Hexagonal Phase Retention in Pressureless Sintered BaTiO3,” Philos. Mag. A, 81 [1] 181-96 (2001).

[40] Y. C. Wu, D. E. McCauley, M. S. H. Chu and H. Y. Lu, “Crystallographic Orientation Relationships between H- and T-BaTiO3,” J. Am. Ceram. Soc., 88 [11] 3154-61 (2005).

[41] A. H. Heuer, “Transformation Toughening in ZrO2-Containing Ceramics,” J. Am. Ceram. Soc., 70 [10] 689-98 (1987).

[42] H. Y. Lu and J. S. Bow, “Effect of MgO Addition on the Microstructure Development of 3 mol% Y2O3-ZrO2,” J. Am. Ceram. Soc., 72 [2] 228-31 (1989).

[43] A. H. Heuer, “Alloy Design in Partially Stabilised Zirconia”; pp. 98-115 in Adv. Ceram., vol. 3, Science and Technology of Zirconia. Edited by A. H. Heuer and L. W. Hobbs. Am. Ceram. Soc., Westerville, OH, U.S.A., 1981.

[44] C. H. Chao and H. Y. Lu, "β-Cristobalite Stabilisation in (Na2O+Al2O3)-Added Silica," Met. Mater. Trans. A, 33 [8] 2703-11 (2002).
[45] A. J. Perrotta, D. K. Grubbs, E. S. Martin, N. R. Dando, H. A. McKinstry and C. Y. Huang, “Chemical Stabilisation of β-Cristobalite,” J. Am. Ceram. Soc., 72 [3] 441-47 (1989).

[46] K. A. Müller and H. Burkard, “SrTiO3: An Intrinsic Quantum Paraelectric Below 4 K,” Phys. Rev. B, 19 [7] 3593-3602 (1979).

[47] G. A. Samara and B. Morosin, “Anharmonic Effects in KTaO3: Ferroelectric Mode, Thermal Expansion, and Compressibility,” Phys. Rev. B, 8 [3] 1256-64 (1973).

[48] J. G. Bednorz and A. Müller, “Sr1-xCaxTiO3: An XY Quantum Ferroelectric with Transition to Randomness,” Phys. Rev. Lett., 52 [25] 2289-92 (1984).]

[49] M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. J. Shan and T. Nakamura, “Ferroelectricity Induced by Oxygen Isotope Exchange in SrTiO3 perovskite,” Phys. Rev. Lett., 82 [17] 3540-43 (1999).

[50] P. A. Fluery, J. F. Scott and J. M. Worlock, “Soft Phonon Mode and the 110 K Phase Transition in SrTiO3,” Phys. Rev. Lett., 21 [1] 16-19 (1968).

[51] W. Zhong and D. Vanderbilt, “Effect of Quantum Fluctuation on the Structure Phase Transitions in SrTiO3 and BaTiO3,” Phys. Rev. B, 53 [9] 5047-50 (1996).

[52] X. X. Xi, H. C. Li, W. Si, A. A. Sirenko, I. A. Akimov, J. R. Fox, A. M. Clark and J. Hao, “Oxide Ferroelectric Films for Tunable Microwave Devices,” J. Electroceram., 4 [2-3] 393-405 (2000).

[53] D. Brunner, S. Taeri-Baghbadrani, W. Sigle and M. Rühle, “Surprising Results of a Study of the Plasticity in SrTiO3,” J. Am. Ceram. Soc., 84 [5] 1161-63 (2001).

[54] V. V. Lemanov, “Improper Ferroelectrics and What We Know Today About Its Properties,” Ferroelectrics, 265 [11] 1-21 (2002).

[55] M. I. Marqués, C. Aragó and J. A. Gonzalo, “Quantum Paraelectric Behaviour of SrTiO3: Relevance of the Structural Phase Transition Temperature,” Phy. Rev. B, 72 [9] 092103-1-3 (2005).

[56] R. A. Cowley, “Temperature Dependence of a Transverse Optic Mode in SrTiO3,” Phys. Rev. Lett., 9 [4] 159-61 (1962).

[57] K. Kinoshita and A. Yamaji, “Grain-Size Effects on Dielectric Properties in BaTiO3 Ceramics,” J. Appl. Phys., 47 [1] 371-73 (1976).

[58] S. Nozawa, T. Iwazumi and H. Osawa, “Direct Observation of the Quantum Fluctuation by UV Irradiation in SrTiO3,” Phys. Rev. B, 72 [12] 121101-1-3 (2005).

[59] Y. Fujii, H. Uwe and T. Sakudo, “Stress-Induced Quantum Ferroelectricity in SrTiO3,” J. Phys. Soc. Jpn, 56 [6] 1940-42 (1987).

[60] J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidal and R. Böhmer, “Quantum Paraelectric and Induced Ferroelectric State in SrTiO3,” J. Phys. Condens. Matter, 8 [25] 4763-90 (1996).

[61] U. Bianchi, J. Dec, W. Kleemann and J. G. Bednorz, “Cluster and Domain-State Dynamics of Ferroelectric Sr1-xCaxTiO3,” Phys. Rev. B, 51 [14] 8737-46 (1995).

[62] B. S. Rawal, M. Kahn, and W. R. Buessem, “Grain Core-Grain Shell
Structure in Barium Titanate-Based Dielectrics”; pp. 172-88 in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited by L. M. Levinson. American Ceramic Society, Columbus, OH, 1981.

[63] H. Y. Lu, J. S. Bow, and W. H. Deng, “Core-Shell Structures in ZrO2-Modif ied BaTiO3 Ceramic,” J. Am. Ceram. Soc., 73 [12] 3562-68 (1990).

[64] D. Henning, and G. Rosenstein, “Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3,” J. Am. Ceram. Soc., 67 [4] 249-54 (1984).

[65] C. A. Randall, D. J. Barber, R. W. Whatmore, and P. Groves, “A TEM Study of Ordering in Perovskite Pb(Sc1/2Ta1/2)O3,” J. Mat. Sci., 21 [12] 4456-4462 (1986).

[66] T. Tsurumi, and Y. Hoshino “Diffuse Phase Transition of Tantalum-Bearing Strontium Barium Miobate,” J. Am. Ceram. Soc.,72 [2] 278-84 (1989).

[67] L. Benguigui, and K. Bethe, “Diffused Phase Transition in BaxSr1-xTiO3 Single Crystal,” J. Appl. Phys., 47 [7] 2787-91 (1976).

[68] G. King, E. Goo, T. Yamanoto, and K. Okazaki, “Crystal Structure and defects of Order (Pb1-xCax)TiO3,” J. Am.Ceram. Soc, 71 [6] 450-60 (1988).

[69] R. Clarke, and J. C. Burfoot, “The diffuse phase transition in potassium strontium Niobate,” Ferroelectrics, 8 [1] 505-6 (1974).

[70] N. Setter, and L. E. Cross, “The contribution of structural disorder to
diffuse phase transitions in ferroelectrics,” J. Mater. Sci., 15 [10] 2478-82 (1980).

[71] N. Setter, and L. E. Cross, “The role of Bsite cation disorder in diffuse phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys., 51 [8] 4356-60 (1980).

[72] C. G. F. Stenger, and A. J. Burggraff, “Order-Disorder Reactions in the Ferroelectric Perovskites Pb(Sc1/2Nb1/2)O3 and Pb(Sc1/2Ta1/2)O3 I. Kinetics of the Ordering Process,” Phys. Stat. Sol., 61 [1] 275-285 (1980).

[73] G. A. Smolensky, “Ferroelctrics with Diffuse Phase Transition,” Ferroelectrics, 53 [1] 129-35 (1984).

[74] M. A. Akbas and P. K. Davies, “Ordering Induced Microstructures and Microwave Dielectric Properties of the Ba(Mg1/3Nb2/3)O3-BaZrO3 System,” J. Am. Ceram. Soc., 81 [3] 670-76 (1998).

[75] X. Wei and X. Yao, “Analysis of Dielectric Response of Polar Nano-Regions in Paraelectric Phase of Relaxor Ferroelectrics,” J. Appl. Phys., 100 [6] 064319-1-6 (2006).

[76] S. Y. Cheng, J. Shieh, N. J. Ho, and H. Y. Lu, ” Phase-transformation-induced microstructure in lead-free ferroelectric ceramics based on (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5)TiO3,” Philos Mag., 91 [31] 4013–32 (2011)

[77] D. I. Woodward and I. M. Reaney, “Electron Diffraction of Tilted Perovskites,” Acta Cryst., B61 [com] 387-99 (2005).

[78] A. M. Glazer, “Simple Ways of Determining Perovskite Structures,” Acta Cryst., A31 [6] 756-62 (1975).

[79] M. A. Carpenter and C. J. Howard, “Symmetry Rules and Strain Order-Parameter Relationships for Coupling between Octahedral Tilting and Cooperative Jahn-Teller Transitions in ABX3 Perovskites: I. Theory,” Acta Cryst., B65 [com] 134-46 (2009).

[80] R. Ranjan, D. Pandey, W. Schuddinck, O. Richard, P. D. Meulenaere, J. V. Landuyt, and G. V. Tendeloo, “Evolution of Crystallographic Phases in (Sr1−xCax)TiO3 with Composition (x),” J. Solid Stat. Chem., 162 [1] 20-28 (2001).

[81] S. Anwar, and N. P. Lalla, “Space group analysis of Sr1−xCaxTiO3 ceramics with x = 0.20, 0.27 and 0.30 through electron diffraction,” J. Phys.: Condens. Matter, 19 [43] 1-19 (2007).

[82] S. Qin, A. I. Becerro, F. Seifert, J. Gottsmann, and J. Jiang, “Phase Transitions in Ca1−xSrxTiO3 Perovskites Effects of Composition and Temperature,” J. Mater. Chem., 10 [7] 1609-15 (2000).

[83] S. K. Mishra, R. Ranjan, D. Pandey, P. Ranson, R. Ouillon, J. Paul, P. Lucarre, and P. Pruzan, “Resolving the controversies about the ''nearly cubic'' and other phases of Sr1-xCaxTiO3 (0≤x≤1): I. Room temperature structures,” J. Phys.: Condens. Matter, 18 [6] 1885-98 (2006).

[84] S. K. Mishra, R. Ranjan, D. Pandey, P. Ranson, R. Ouillon, J. Paul, P. Lucarre, and P. Pruzan, “Resolving the controversies about the ''nearly cubic'' and other phases of Sr1-xCaxTiO3 (0≤x≤1): II. Room temperature structures,” J. Phys.: Condens. Matter, 18 [6] 1899-912 (2006).

[85] T. Yamanaka, N. Hirai, and Y. Komatsu, “Structure change of Ca1−xSrxTiO3 perovskite with composition and pressure,” Am. Mineral, 87 [8-9] 1183-89 (2002).

[86] S. K. Mishra and D. Pandey, “Low-Temperature XRD Study of the Phase Transitions in Sr1-xCaxTiO3 (x = 0.02, 0.04): Evidence for Ferroelectric Ordering,” Appl. Phys. Lett., 95 [23] 232910-1-3 (2009).

[87] D. I. Woodward, P. L. Wise, W. E. Lee, and I. M. Reaney, “Space group symmetry of (CaxSr1−x)TiO3 determined using electron diffraction,” J. Phys.: Condent. Matter., 18 [8] 2401-8 (2006).

[88] M. Tanaka, H. Sekii, and T. Nagasawa, “Space-Group Determination by Dynamic Extinction in Convergent-Beam Electron,” Acta Cryst., 39 [6] 825-37 (1983).

[89] M. Tanaka, R. Satio, and H. Sekii, “Point-Group Determination by Convergent- Beam Electron Diffraction,’’ Acta Cryst., A39 [3] 357–68 (1983).

[90] M. Tanaka, M. Terauchi, and K. Tsuda, Convergent-Beam Electron Diffraction III, pp. 45–50, JEOL Ltd., Tokyo, Japan, 1994

[91] P. E. Champness, Electron Diffraction in the Transmission Electron Microscope, pp. 101, Guildford, U. K., 2001.

[92] S. Y. Cheng, N. J. Ho, and H. Y. Lu, “Transformation-Induced Twinning: The 90o and 180o Ferroelectric Domains in Tetragonal BaTiO3,” J. Am. Ceram. Soc., 89 [7] 2177-87 (2006).

[93] R. Gevers, H. Blank, and S. Amelinckx, “Extension of the Howei-Whelan equations for electron diffraction to non-centrosymmetric
crystals,” Phys. stat. sol. (b), 13 [2] 449-65 (1966).

[94] R. Serneels, M. Snykers, P. Delavingnette, R. Gevers, and S. Amelinckx, “Friedel’s law in electron diffraction as applied to the study of domain structure in non-centrosymmetrical crystals,” Phys. stat. sol. (b), 58 [1] 277-92 (1973).

[95] W. L. Wang and H. Y. Lu, “Twinning Induced by the Rhombohedral to Orthorhombic Phase Transition in LaGaO3,” Phys. Chem. Miner., 33 [7] 435-44 (2006).

[96] W. L. Wang and H. Y. Lu, “111 Twins in Orthorhombic LaGaO3 Perovskite,” J. Am. Ceram. Soc., 90 [1] 264-71 (2007).

[97] S. Y. Cheng, N. J. Ho and H. Y. Lu, “Phase-Transformation-Induced Anti-Phase Domains in BaCeO3 Perovskite,” J. Am. Ceram. Soc., 89 [11] 3498-506 (2006).

[98] W. L. Wang and H. Y. Lu, “Phase-Transformation-Induced Twinning in Orthorhombic LaGaO3: {121} and [010] Twins,” J. Am. Ceram. Soc., 89 [1] 281-91 (2006).

[99] G. L. Nord, Jr., “Imaging Transformation-Induced Microstructure”; pp. 455-508 in Minerals and Reaction at the Atomic Scale, TEM. Rev. Mineral., vol. 27. Edited by P. R. Buseck, Mineral Society of America, Washington, DC, 1992.

[100] J. Tolédano and P. Tolédano, The Landau Theory of Phase Transition, World Scientific, Teaneck, N.Y., U.S.A., 1987.

[101] S. Amelinckx and J. van Landuyt, “The Study of Planar Interface by Means of Electron Microscopy”; pp. 107-51 in Diffraction and Imaging Techniques in Materials Science. Editor S. Amelinckx, R. Gevers, and J. van Landuyt, North Holland, Amsterdam, Netherlands, 1978.

[102] A. G. Christy, “Multistage Diffusionless Pathways for Reconstructive Phase Transition: Applications to Binary Compounds and Calcium Carbonate,” Acta Crystall. B, 49 [6] 987-96 (1993).

[103] M. Guymont, “Symmetry Analysis of Structural Transitions between Phases not Necessarily Group-Subgroup Related: Domain Structure,” Phys. Rev. B, 24 [5] 2647-55 (1981).

[104] R. C. Buchanan, Ceramic Materials for Electronics Processing, Properties, and Applications, pp.141-153, Marcel Dekker, New York, NY, USA, 1986

[105] T. Hahn, International tables for crystallography, 2nd edition, pp. 288-289, Kluwer, New York, 1987.

[106] F. D. Bloss, Crystallography and Crystal Chemistry. Holt Rinehart and Winston, New York, NY, 1971.

[107] D. B. Williams, and C. B. Carter, Transmission electron microscopy, Plenum press, New York, 1996.

[108] B. F. Buxton, J. A. Eades, J. W. Steeds, and G. M. Rackham, “The Symmetry of Electron Diffraction Zone Axis Patterns,” Phil. Trans. R. Soc. London, Series A, Math. Phys. Sci., 281 [1301] 171-94 (1976).

[109] J. W. Steeds, Convergent beam electron diffraction. In:Introduction to Analytical Electron Microscopy, pp. 387-422, Plenum Press, New York.

[110] H. W. Lee, M. S. H, Chu, and H. Y. Lu, “Crystal Symmetry of BaTiO3 Grains in X7R Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., 94 [4] 1289-96 (2011).

[111] M. Tanaka, M. Terauchi, K. Tsuda, and K. Saitoh, Convergent-Beam Electron Diffraction IV, pp. 323, JEOL Ltd., Tokyo, Japan, 2002.

[112] J. Gjǿnnes, and A. F. Moodie, “Extinction Conditions in the Dynamic Theory of Electron Diffraction,” Acta Cryst., 19 [1] 65-67 (1965).

[113] M. Tanaka, M. Terauchi, and K. Tsuda, Convergent-Beam Electron Diffraction, pp. 160-161, JEOL Ltd., Tokyo, Japan, 1994

[114] B. D. Cullity, and S .R. Stoke, Elements of X-ray Diffraction, Third Edition, Prentice-Hall, Englewood Cliff, NJ, USA, 1978

[115] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., 2 [2] 65-71 (1969)

[116] B. F. Buxton, J. A. Eades, J. W. Steeds, and G. M. Rackham, “The Symmetry of Electron Diffraction Zone Axis Patterns,” Phil. Trans. R. Soc. London, Series A, Math. Phys. Sci., 281 [1301] 171-94 (1976).

[117] R. Ranjan, and D. Pandey, “Antiferroelectric Phase Transition in (Sr1-xCax)TiO3 : I. Dielectric Studies,” J. Phys.: Condens. Matter, 13 [19] 4239-49 (2001).

[118] R. Ranjan, and D. Pandey, “Antiferroelectric phase transition in (Sr1-xCax)TiO3: II. X-ray diffraction studies,” J. Phys.: Condens. Matter, 13 [19] 4251-66 (2001).

[118] R. Ouillon, J-P. Pinan-Lucarre, P. Ranson, PH. Pruzan, S. K. Mishra, R. Ranjan, and D. Pandey, “A Raman scattering study of the phase transitions in SrTiO3 and in the mixed system at ambient pressure from 300 K down to 8,” J. Phys.: Condens. Matter, 14 [8] 2079-92 (2002).

[119] R. F. Schaufele and M. J. Weber, ” First and Second Order Raman Scattering of SrTiO3,” J. Chem. Phys., 46 [7] 2859-61 (1967)

[120] J. P. Morniroli, A. Redjaimia, and S. Nicolopoulos, “Contribution of electron precession to the identification of the space group from microdiffraction patterns,” Ultramicroscopy, 107 [6-7] 514-522 (2007)

[121] B.J. Kennedy , C. J. Howard, and B. C. Chakoumako, “Phase transitions in perovskite at elevated temperatures - A powder neutron diffraction study,” J. Phys.: Condens. Matter, 11 [6] 1479-88 (1999).

[122] R. Ali, and M. Yashima, “Space group and the crystal structure of the perovskite CaTiO3 from 196 to 1720 K,” J. Solid Stat. Chem., 178 [9] 2867-72 (2005).

[123] C. J. Howard and H. T. Stokes, “Group-Theoretical Analysis of Octahedral Tilting in Perovskites,” Acta Cryst. 54 [6] 782-9 (1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top