|
[1] R. H. Mitchell, “Perovskites - Modern and ancient,” Almaz Press, Thunder Bay, Ontario, Canada, 2002.
[2] D. Hennings and H. Schreinemacher, “Ca-acceptors in Dielectric Ceramics Sintered in Reducive Atmospheres,” J. Eur. Ceram. Soc., 15 8 795-800 (1995).
[3] D. Hennings, A. Schnell and G. Simon, “Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics,” 65 [11] 539-44 (1982).
[4] L. E.Cross, “Relaxor ferroelectrics,” Ferroelectrics, 76 241-267 (1987).
[5] F. S.Galasso, “Structures and properties of inorganic solids,” Pergamon, Oxford, England, 1970.
[6] G. Shirane, and Y. Yamada, “Lattice-dynamical study of the 110 oK phase transition in SrTiO3,” Phys. Rev. 177 [2] 858–863 (1969).
[7] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Dielectric properties” pp.913-974 in Introduction to ceramics, 2nd Ed., J. Wiley, N. Y., 1976.
[8] F. D.Bloss , “Crystallography and crystal chemistry: An introduction,” Holt, Reinhart and Winston, N. Y., 1971.
[9] A. Kelly, G. W. Groves, and P. Kidd, “Crystallography and Crystal Defects,” pp. 439-46, J. Wiley, N.Y, NY, 2000
[10] S. N. Ruddlesden and P. Popper, “The Compound Sr3Ti2O7 and Its Structure,” Acta Cryst., 11 [2] 54-55 (1958).
[11] T. Riedl, “ELNES Study of Chemical Solution Deposited SrO(SrTiO3) Ruddlesden-Popper Films: Experiment and Simulation,” Ultramicroscopy, 110 [1] 26-32 (2009).
[12] R. J. D. Tilley, “An Electron Microscope Study of Perovskite-Related Oxides in the Sr-Ti-O System,” J. Solid Stat. Chem., 21 [4] 293-301 (1977).
[13] M. A. McCoy, R. W. Grime, and W. E. Lee, “Phase Stability and Interfacial Structure in the SrO-SrTiO3 System,” Philos. Mag. A, 75 [3] 833-46 (1997).
[14] T. Hungria, I. MacLaren, H. Fuess, J. Galy, and A. Castro, “HREM Studies of Intergrowths in Sr2(Srn-2Ti3nO3n+1) Ruddlesden-Popper Phases Synthesized by Mechanochemical Activation,” Mater. Lett., 62 [17-18] 3095-98 (2008).
[15] S. Sturm and A. Recnik, “Formation of Ruddlesden–Popper faults and polytype phases in SrO-doped SrTiO3,” J. Mater. Res., 15 [10] 1231-39 (2000)
[16] J. W. Edington, “Practional Electron Microscopy in Materials Science,” pp. 109-204, N. V. Philips, Gloeilampenfabrieken, Eindhoven, The Netherlands, 1976
[17] J. Singleton, “Band theory and electronic properties of solids,” 2ThED., OUP, 2001
[18] C. Park and R. I. Snyder, “Perovskite stacking in the structures of the high temperature cuprate superconductors,” Appl. supercon., 3 [1-3] 73-83 (1995).
[19] S. Sturm, “Atomic-scale structure and compositional analyses of Ruddlesden–Popper planar faults in AO – excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics,” J. Mater. Res., 24 [8] 2596-2604 (2009).
[20] D. A. Freedman and T. A. Arias, “Impact of octahedral rotations on Ruddlesden-Popper phases of antiferrodistortive perovskites,” cond. mat., 60 [com] 1-18 (2009).
[21] P.L. Wise, I. M. Reaney and W. E. Lee, “ Tunability of in perovskites and related compounds,” J. Mater. Res., 17 [8] 2033-40 (2002).
[22] S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorny, I. M. Reaney and P. L. Wise, “Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series,” J. Eur. Ceram. Soc., 23 [14] 2639-45 (2003).
[23] S. Amelinckx, and J. V. Landuyt, “Contrast effects at planar interfaces,” pp. 68-112 in Electron Microscopy in Mineralogy. Edited by H. R. Wenk, P. E. Champness, J. M. Christie, J. M. Cowley, A. H. Heuer, G. Thomas, and N. J. Tighe, Springer-Verlag, Berlin, Germany, 1976
[24] Y. F. Liu, Y. N. Lu, M. Xu, L. F. Zhou, and S. Z. Shi, “Topochemical Reaction of SrTiO3 Platelet Crystals Based on Sr3Ti2O7 Platelet Precursor in Molten Salt Process,” Mater. Phys. Chem., 114 [1] 37-42 (2009).
[25] T. Takeuchi, T. Tani, and T. Satoh, “Microcomposite Particles with an Expitaxial Core-Shell Structure,” Solid Stat. Ion., 108 [1] 67-71 (1998).
[26] A. F. Devonshire,”Theory of Barium Titanate-part I” Phil.Mag., 40 [com] 1043-63 (1949).
[27] Roland and S. Strawn, ”Investigation and Application of PLZT ferroelectric ceramic” Ph.D. Thesis [1976] Arizona state university.
[28] T. Malis and H. Gleiter,” Investigation of the structure of Ferroelectric Domain boundaries by Transmission Electron Microscopy,” J. Appl. Phys., 47 [12] 5195-5200 (1976)
[29] A. J. Moulson and J. M. Herbert, “Electroceramics–Materials, properties, applications”, Chapman and Hall, London, 1990
[30] R. Garg, A. Senyshyn, H. Boysen, and R. Ranjan, “Structure of the Noncubic Phase in the Ferroelectric State of Pr-Subsituted SrTiO3,” Phys. Rev. B, 79 [14] 144122-1-6 (2009).
[31] V. V. Lemanov, “Improper Ferroelectrics and What We Know Today About Its Properties,” Ferroelectrics, 265 [11] 1-21 (2002).
[32] J. G. Bednorz and A. Müller, “Sr1-xCaxTiO3: An XY Quantum Ferroelectric with Transition to Randomness,” Phys. Rev. Lett., 52 [25] 2289-92 (1984).
[33] M. Fujimoto, T. Suzuki, Y. Nishi, K. Arai and J. Tanaka, “Calcium-Ion Selective Site Occupation at Ruddlesden-Popper-Type Faults and the Resultant Dielectric Properties of A-site Excess (Sr,Ca)TiO3 Ceramics,” J. Am. Ceram. Soc., 81 [1] 33-40 (1998)
[34] R. Ranjan and D. Pandey, “Novel Features of Sr1-xCaxTiO3 Phase Diagram: Evidence for Competing Antiferroelectric and Ferroelectric Interactions,” Phys. Rev. Lett, 84 [16] 3726-29 (2000).
[35] H. I. Hsiang and F. S. Yen, ”Effect of Crystallite Size on the Ferroelectric Domain Growth of Ultrafine BaTiO3 Powders,” J. Am. Ceram. Soc., 79 [4] 1053-60 (1996)
[36] H. W. Lee, M. S. H. Chu and H. Y. Lu, “Intragranular Voids and dc Degradation in (CaO+MgO)-Codoped BaTiO3 MLCCs,” J. Am. Ceram. Soc., 92 [12] 3037-43 (2009).
[37 ]Y. C. Wu, D. E. McCauley, M. S. H. Chu, and H. Y. Lu, “The {111} Modulated Domains in Tetragonal BaTiO3,” J. Am. Ceram. Soc., 89 [9] 2072-79 (2006).
[38] H. Y. Lu, J. S. Bow, and W. H. Deng, “Core-Shell Structure in ZrO-Modified BaTiO3 Ceramics,” J. Am. Ceram. Soc., 73 [12] 3562-68 (1990).
[39] M. H. Lin and H. Y. Lu, “Hexagonal Phase Retention in Pressureless Sintered BaTiO3,” Philos. Mag. A, 81 [1] 181-96 (2001).
[40] Y. C. Wu, D. E. McCauley, M. S. H. Chu and H. Y. Lu, “Crystallographic Orientation Relationships between H- and T-BaTiO3,” J. Am. Ceram. Soc., 88 [11] 3154-61 (2005).
[41] A. H. Heuer, “Transformation Toughening in ZrO2-Containing Ceramics,” J. Am. Ceram. Soc., 70 [10] 689-98 (1987).
[42] H. Y. Lu and J. S. Bow, “Effect of MgO Addition on the Microstructure Development of 3 mol% Y2O3-ZrO2,” J. Am. Ceram. Soc., 72 [2] 228-31 (1989).
[43] A. H. Heuer, “Alloy Design in Partially Stabilised Zirconia”; pp. 98-115 in Adv. Ceram., vol. 3, Science and Technology of Zirconia. Edited by A. H. Heuer and L. W. Hobbs. Am. Ceram. Soc., Westerville, OH, U.S.A., 1981.
[44] C. H. Chao and H. Y. Lu, "β-Cristobalite Stabilisation in (Na2O+Al2O3)-Added Silica," Met. Mater. Trans. A, 33 [8] 2703-11 (2002). [45] A. J. Perrotta, D. K. Grubbs, E. S. Martin, N. R. Dando, H. A. McKinstry and C. Y. Huang, “Chemical Stabilisation of β-Cristobalite,” J. Am. Ceram. Soc., 72 [3] 441-47 (1989).
[46] K. A. Müller and H. Burkard, “SrTiO3: An Intrinsic Quantum Paraelectric Below 4 K,” Phys. Rev. B, 19 [7] 3593-3602 (1979).
[47] G. A. Samara and B. Morosin, “Anharmonic Effects in KTaO3: Ferroelectric Mode, Thermal Expansion, and Compressibility,” Phys. Rev. B, 8 [3] 1256-64 (1973).
[48] J. G. Bednorz and A. Müller, “Sr1-xCaxTiO3: An XY Quantum Ferroelectric with Transition to Randomness,” Phys. Rev. Lett., 52 [25] 2289-92 (1984).]
[49] M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. J. Shan and T. Nakamura, “Ferroelectricity Induced by Oxygen Isotope Exchange in SrTiO3 perovskite,” Phys. Rev. Lett., 82 [17] 3540-43 (1999).
[50] P. A. Fluery, J. F. Scott and J. M. Worlock, “Soft Phonon Mode and the 110 K Phase Transition in SrTiO3,” Phys. Rev. Lett., 21 [1] 16-19 (1968).
[51] W. Zhong and D. Vanderbilt, “Effect of Quantum Fluctuation on the Structure Phase Transitions in SrTiO3 and BaTiO3,” Phys. Rev. B, 53 [9] 5047-50 (1996).
[52] X. X. Xi, H. C. Li, W. Si, A. A. Sirenko, I. A. Akimov, J. R. Fox, A. M. Clark and J. Hao, “Oxide Ferroelectric Films for Tunable Microwave Devices,” J. Electroceram., 4 [2-3] 393-405 (2000).
[53] D. Brunner, S. Taeri-Baghbadrani, W. Sigle and M. Rühle, “Surprising Results of a Study of the Plasticity in SrTiO3,” J. Am. Ceram. Soc., 84 [5] 1161-63 (2001).
[54] V. V. Lemanov, “Improper Ferroelectrics and What We Know Today About Its Properties,” Ferroelectrics, 265 [11] 1-21 (2002).
[55] M. I. Marqués, C. Aragó and J. A. Gonzalo, “Quantum Paraelectric Behaviour of SrTiO3: Relevance of the Structural Phase Transition Temperature,” Phy. Rev. B, 72 [9] 092103-1-3 (2005).
[56] R. A. Cowley, “Temperature Dependence of a Transverse Optic Mode in SrTiO3,” Phys. Rev. Lett., 9 [4] 159-61 (1962).
[57] K. Kinoshita and A. Yamaji, “Grain-Size Effects on Dielectric Properties in BaTiO3 Ceramics,” J. Appl. Phys., 47 [1] 371-73 (1976).
[58] S. Nozawa, T. Iwazumi and H. Osawa, “Direct Observation of the Quantum Fluctuation by UV Irradiation in SrTiO3,” Phys. Rev. B, 72 [12] 121101-1-3 (2005).
[59] Y. Fujii, H. Uwe and T. Sakudo, “Stress-Induced Quantum Ferroelectricity in SrTiO3,” J. Phys. Soc. Jpn, 56 [6] 1940-42 (1987).
[60] J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidal and R. Böhmer, “Quantum Paraelectric and Induced Ferroelectric State in SrTiO3,” J. Phys. Condens. Matter, 8 [25] 4763-90 (1996).
[61] U. Bianchi, J. Dec, W. Kleemann and J. G. Bednorz, “Cluster and Domain-State Dynamics of Ferroelectric Sr1-xCaxTiO3,” Phys. Rev. B, 51 [14] 8737-46 (1995).
[62] B. S. Rawal, M. Kahn, and W. R. Buessem, “Grain Core-Grain Shell Structure in Barium Titanate-Based Dielectrics”; pp. 172-88 in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited by L. M. Levinson. American Ceramic Society, Columbus, OH, 1981.
[63] H. Y. Lu, J. S. Bow, and W. H. Deng, “Core-Shell Structures in ZrO2-Modif ied BaTiO3 Ceramic,” J. Am. Ceram. Soc., 73 [12] 3562-68 (1990).
[64] D. Henning, and G. Rosenstein, “Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3,” J. Am. Ceram. Soc., 67 [4] 249-54 (1984).
[65] C. A. Randall, D. J. Barber, R. W. Whatmore, and P. Groves, “A TEM Study of Ordering in Perovskite Pb(Sc1/2Ta1/2)O3,” J. Mat. Sci., 21 [12] 4456-4462 (1986).
[66] T. Tsurumi, and Y. Hoshino “Diffuse Phase Transition of Tantalum-Bearing Strontium Barium Miobate,” J. Am. Ceram. Soc.,72 [2] 278-84 (1989).
[67] L. Benguigui, and K. Bethe, “Diffused Phase Transition in BaxSr1-xTiO3 Single Crystal,” J. Appl. Phys., 47 [7] 2787-91 (1976).
[68] G. King, E. Goo, T. Yamanoto, and K. Okazaki, “Crystal Structure and defects of Order (Pb1-xCax)TiO3,” J. Am.Ceram. Soc, 71 [6] 450-60 (1988).
[69] R. Clarke, and J. C. Burfoot, “The diffuse phase transition in potassium strontium Niobate,” Ferroelectrics, 8 [1] 505-6 (1974).
[70] N. Setter, and L. E. Cross, “The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” J. Mater. Sci., 15 [10] 2478-82 (1980).
[71] N. Setter, and L. E. Cross, “The role of Bsite cation disorder in diffuse phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys., 51 [8] 4356-60 (1980).
[72] C. G. F. Stenger, and A. J. Burggraff, “Order-Disorder Reactions in the Ferroelectric Perovskites Pb(Sc1/2Nb1/2)O3 and Pb(Sc1/2Ta1/2)O3 I. Kinetics of the Ordering Process,” Phys. Stat. Sol., 61 [1] 275-285 (1980).
[73] G. A. Smolensky, “Ferroelctrics with Diffuse Phase Transition,” Ferroelectrics, 53 [1] 129-35 (1984).
[74] M. A. Akbas and P. K. Davies, “Ordering Induced Microstructures and Microwave Dielectric Properties of the Ba(Mg1/3Nb2/3)O3-BaZrO3 System,” J. Am. Ceram. Soc., 81 [3] 670-76 (1998).
[75] X. Wei and X. Yao, “Analysis of Dielectric Response of Polar Nano-Regions in Paraelectric Phase of Relaxor Ferroelectrics,” J. Appl. Phys., 100 [6] 064319-1-6 (2006).
[76] S. Y. Cheng, J. Shieh, N. J. Ho, and H. Y. Lu, ” Phase-transformation-induced microstructure in lead-free ferroelectric ceramics based on (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5)TiO3,” Philos Mag., 91 [31] 4013–32 (2011)
[77] D. I. Woodward and I. M. Reaney, “Electron Diffraction of Tilted Perovskites,” Acta Cryst., B61 [com] 387-99 (2005).
[78] A. M. Glazer, “Simple Ways of Determining Perovskite Structures,” Acta Cryst., A31 [6] 756-62 (1975).
[79] M. A. Carpenter and C. J. Howard, “Symmetry Rules and Strain Order-Parameter Relationships for Coupling between Octahedral Tilting and Cooperative Jahn-Teller Transitions in ABX3 Perovskites: I. Theory,” Acta Cryst., B65 [com] 134-46 (2009).
[80] R. Ranjan, D. Pandey, W. Schuddinck, O. Richard, P. D. Meulenaere, J. V. Landuyt, and G. V. Tendeloo, “Evolution of Crystallographic Phases in (Sr1−xCax)TiO3 with Composition (x),” J. Solid Stat. Chem., 162 [1] 20-28 (2001).
[81] S. Anwar, and N. P. Lalla, “Space group analysis of Sr1−xCaxTiO3 ceramics with x = 0.20, 0.27 and 0.30 through electron diffraction,” J. Phys.: Condens. Matter, 19 [43] 1-19 (2007).
[82] S. Qin, A. I. Becerro, F. Seifert, J. Gottsmann, and J. Jiang, “Phase Transitions in Ca1−xSrxTiO3 Perovskites Effects of Composition and Temperature,” J. Mater. Chem., 10 [7] 1609-15 (2000).
[83] S. K. Mishra, R. Ranjan, D. Pandey, P. Ranson, R. Ouillon, J. Paul, P. Lucarre, and P. Pruzan, “Resolving the controversies about the ''nearly cubic'' and other phases of Sr1-xCaxTiO3 (0≤x≤1): I. Room temperature structures,” J. Phys.: Condens. Matter, 18 [6] 1885-98 (2006).
[84] S. K. Mishra, R. Ranjan, D. Pandey, P. Ranson, R. Ouillon, J. Paul, P. Lucarre, and P. Pruzan, “Resolving the controversies about the ''nearly cubic'' and other phases of Sr1-xCaxTiO3 (0≤x≤1): II. Room temperature structures,” J. Phys.: Condens. Matter, 18 [6] 1899-912 (2006).
[85] T. Yamanaka, N. Hirai, and Y. Komatsu, “Structure change of Ca1−xSrxTiO3 perovskite with composition and pressure,” Am. Mineral, 87 [8-9] 1183-89 (2002).
[86] S. K. Mishra and D. Pandey, “Low-Temperature XRD Study of the Phase Transitions in Sr1-xCaxTiO3 (x = 0.02, 0.04): Evidence for Ferroelectric Ordering,” Appl. Phys. Lett., 95 [23] 232910-1-3 (2009).
[87] D. I. Woodward, P. L. Wise, W. E. Lee, and I. M. Reaney, “Space group symmetry of (CaxSr1−x)TiO3 determined using electron diffraction,” J. Phys.: Condent. Matter., 18 [8] 2401-8 (2006).
[88] M. Tanaka, H. Sekii, and T. Nagasawa, “Space-Group Determination by Dynamic Extinction in Convergent-Beam Electron,” Acta Cryst., 39 [6] 825-37 (1983).
[89] M. Tanaka, R. Satio, and H. Sekii, “Point-Group Determination by Convergent- Beam Electron Diffraction,’’ Acta Cryst., A39 [3] 357–68 (1983).
[90] M. Tanaka, M. Terauchi, and K. Tsuda, Convergent-Beam Electron Diffraction III, pp. 45–50, JEOL Ltd., Tokyo, Japan, 1994
[91] P. E. Champness, Electron Diffraction in the Transmission Electron Microscope, pp. 101, Guildford, U. K., 2001.
[92] S. Y. Cheng, N. J. Ho, and H. Y. Lu, “Transformation-Induced Twinning: The 90o and 180o Ferroelectric Domains in Tetragonal BaTiO3,” J. Am. Ceram. Soc., 89 [7] 2177-87 (2006).
[93] R. Gevers, H. Blank, and S. Amelinckx, “Extension of the Howei-Whelan equations for electron diffraction to non-centrosymmetric crystals,” Phys. stat. sol. (b), 13 [2] 449-65 (1966).
[94] R. Serneels, M. Snykers, P. Delavingnette, R. Gevers, and S. Amelinckx, “Friedel’s law in electron diffraction as applied to the study of domain structure in non-centrosymmetrical crystals,” Phys. stat. sol. (b), 58 [1] 277-92 (1973).
[95] W. L. Wang and H. Y. Lu, “Twinning Induced by the Rhombohedral to Orthorhombic Phase Transition in LaGaO3,” Phys. Chem. Miner., 33 [7] 435-44 (2006).
[96] W. L. Wang and H. Y. Lu, “111 Twins in Orthorhombic LaGaO3 Perovskite,” J. Am. Ceram. Soc., 90 [1] 264-71 (2007).
[97] S. Y. Cheng, N. J. Ho and H. Y. Lu, “Phase-Transformation-Induced Anti-Phase Domains in BaCeO3 Perovskite,” J. Am. Ceram. Soc., 89 [11] 3498-506 (2006).
[98] W. L. Wang and H. Y. Lu, “Phase-Transformation-Induced Twinning in Orthorhombic LaGaO3: {121} and [010] Twins,” J. Am. Ceram. Soc., 89 [1] 281-91 (2006).
[99] G. L. Nord, Jr., “Imaging Transformation-Induced Microstructure”; pp. 455-508 in Minerals and Reaction at the Atomic Scale, TEM. Rev. Mineral., vol. 27. Edited by P. R. Buseck, Mineral Society of America, Washington, DC, 1992.
[100] J. Tolédano and P. Tolédano, The Landau Theory of Phase Transition, World Scientific, Teaneck, N.Y., U.S.A., 1987.
[101] S. Amelinckx and J. van Landuyt, “The Study of Planar Interface by Means of Electron Microscopy”; pp. 107-51 in Diffraction and Imaging Techniques in Materials Science. Editor S. Amelinckx, R. Gevers, and J. van Landuyt, North Holland, Amsterdam, Netherlands, 1978.
[102] A. G. Christy, “Multistage Diffusionless Pathways for Reconstructive Phase Transition: Applications to Binary Compounds and Calcium Carbonate,” Acta Crystall. B, 49 [6] 987-96 (1993).
[103] M. Guymont, “Symmetry Analysis of Structural Transitions between Phases not Necessarily Group-Subgroup Related: Domain Structure,” Phys. Rev. B, 24 [5] 2647-55 (1981).
[104] R. C. Buchanan, Ceramic Materials for Electronics Processing, Properties, and Applications, pp.141-153, Marcel Dekker, New York, NY, USA, 1986
[105] T. Hahn, International tables for crystallography, 2nd edition, pp. 288-289, Kluwer, New York, 1987.
[106] F. D. Bloss, Crystallography and Crystal Chemistry. Holt Rinehart and Winston, New York, NY, 1971.
[107] D. B. Williams, and C. B. Carter, Transmission electron microscopy, Plenum press, New York, 1996.
[108] B. F. Buxton, J. A. Eades, J. W. Steeds, and G. M. Rackham, “The Symmetry of Electron Diffraction Zone Axis Patterns,” Phil. Trans. R. Soc. London, Series A, Math. Phys. Sci., 281 [1301] 171-94 (1976).
[109] J. W. Steeds, Convergent beam electron diffraction. In:Introduction to Analytical Electron Microscopy, pp. 387-422, Plenum Press, New York.
[110] H. W. Lee, M. S. H, Chu, and H. Y. Lu, “Crystal Symmetry of BaTiO3 Grains in X7R Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., 94 [4] 1289-96 (2011).
[111] M. Tanaka, M. Terauchi, K. Tsuda, and K. Saitoh, Convergent-Beam Electron Diffraction IV, pp. 323, JEOL Ltd., Tokyo, Japan, 2002.
[112] J. Gjǿnnes, and A. F. Moodie, “Extinction Conditions in the Dynamic Theory of Electron Diffraction,” Acta Cryst., 19 [1] 65-67 (1965).
[113] M. Tanaka, M. Terauchi, and K. Tsuda, Convergent-Beam Electron Diffraction, pp. 160-161, JEOL Ltd., Tokyo, Japan, 1994
[114] B. D. Cullity, and S .R. Stoke, Elements of X-ray Diffraction, Third Edition, Prentice-Hall, Englewood Cliff, NJ, USA, 1978
[115] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., 2 [2] 65-71 (1969)
[116] B. F. Buxton, J. A. Eades, J. W. Steeds, and G. M. Rackham, “The Symmetry of Electron Diffraction Zone Axis Patterns,” Phil. Trans. R. Soc. London, Series A, Math. Phys. Sci., 281 [1301] 171-94 (1976).
[117] R. Ranjan, and D. Pandey, “Antiferroelectric Phase Transition in (Sr1-xCax)TiO3 : I. Dielectric Studies,” J. Phys.: Condens. Matter, 13 [19] 4239-49 (2001).
[118] R. Ranjan, and D. Pandey, “Antiferroelectric phase transition in (Sr1-xCax)TiO3: II. X-ray diffraction studies,” J. Phys.: Condens. Matter, 13 [19] 4251-66 (2001).
[118] R. Ouillon, J-P. Pinan-Lucarre, P. Ranson, PH. Pruzan, S. K. Mishra, R. Ranjan, and D. Pandey, “A Raman scattering study of the phase transitions in SrTiO3 and in the mixed system at ambient pressure from 300 K down to 8,” J. Phys.: Condens. Matter, 14 [8] 2079-92 (2002).
[119] R. F. Schaufele and M. J. Weber, ” First and Second Order Raman Scattering of SrTiO3,” J. Chem. Phys., 46 [7] 2859-61 (1967)
[120] J. P. Morniroli, A. Redjaimia, and S. Nicolopoulos, “Contribution of electron precession to the identification of the space group from microdiffraction patterns,” Ultramicroscopy, 107 [6-7] 514-522 (2007)
[121] B.J. Kennedy , C. J. Howard, and B. C. Chakoumako, “Phase transitions in perovskite at elevated temperatures - A powder neutron diffraction study,” J. Phys.: Condens. Matter, 11 [6] 1479-88 (1999).
[122] R. Ali, and M. Yashima, “Space group and the crystal structure of the perovskite CaTiO3 from 196 to 1720 K,” J. Solid Stat. Chem., 178 [9] 2867-72 (2005).
[123] C. J. Howard and H. T. Stokes, “Group-Theoretical Analysis of Octahedral Tilting in Perovskites,” Acta Cryst. 54 [6] 782-9 (1998)
|