|
[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York, NY: John Wiley &; Sons, 1991. [2] Sam E. Ganis, Notes on the Fibonacci Sequence, Amer. Math. Monthly, 1959, pp. 129- 130. [3] A. D. WYNER, An Upper Bound on the Entropy Series, Inf. Control, vol. 20, pp. 176-181, 1972. [4] S. K. Leung-Yan-Cheong and T. M. Cover, Some equivalences between Shannon entropy and kolmogorov complexity, IEEE Trans. on Information theory, vol. IT-24, no. 3, pp. 331-338, May 1978. [5] J. G. Dunham, Optimal noiseless coding of random variables, IEEE Trans. Inf. Theory, vol. IT-26, no. 3, p. 345, May 1980. [6] J. Rissanen, Tight lower bounds for optimum code length, IEEE Trans. Inf. Theory, vol. IT-28, no. 2, pp. 348V349, Mar. 1982. [7] E. I. Verriest, An achievable bound for optimal noiseless coding of a random variable, IEEE Trans. Inf. Theory, vol. IT-32, no. 4, pp. 592V594, Jul. 1986. [8] Noga Alon, Alon Orlitsky, A lower bound on the expected length of one-to-one codes, IEEE TRANS. on Information theory, Vol. 40, Sep. 1994. [9] Carlo Blundo, Roberto De Prisco, New Bounds on the Expected Length of One-to-one Codes, IEEE TRANS. on Information theory, Vol. 42, NO. 1, Jan. 1996. [10] Serap A. Savari, Akshay Naheta, Bounds on the Expected Cost of One-to-One Codes, ISIT , June 2004 [11] Jay Cheng, Tien-ke Huang, Claudio Weidmann, New bounds on the expected length of optimal one-to-one codes, IEEE TRANS. on Information theory, Vol. 53, NO. 5, May 2007. [12] Serap A. Savari, On One-to-One Codes for Memoryless Cost Channels, IEEE TRANS. on Information theory, Vol. 54, NO. 1, Jan. 2008 [13] Wojciech Szpankowski, A One-to-One Code and Its Anti-Redundancy, IEEE TRANS. on Information theory, Vol. 54, NO. 10, Oct. 2008 [14] Wojciech Szpankowskia and Sergio Verdu, Minimum Expected Length of Fixed-to- Variable Lossless Compression of Memoryless Sources, ISIT, Seoul Korea July. 2009 [15] Richard Stanley, Enumerative Combinatorics, Vols. 1 and 2, Cambridge Studies in Advanced Mathematics, 2011. [16] Norman Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, 1994. [17] Jrgen Bang-Jensen and Gregory Z. Gutin, Theory, Algorithms and Applications, Springer Monographs in Mathematics, 2009. [18] I. Goulden and D.M. Jackson, An inversion theorem for cluster decompositions of se- quences with distinguished subsequences, J. London Math. Soc. 20 ,pp. 567-576., 1979. [19] John Noonan and Doron Zeilberger, The Goulden-Jackson Cluster Method: Extensions, Applications, and Implementations, J. Dierence Eq. Appl. 5, pp. 355-377, 1999. [20] Xiangdong Wen, The symbolic Goulden-Jackson cluster method, J. Dierence Eq. Appl. 11:2,pp 173-179, 2006. [21] Elizabeth J. Kupin and Debbie S. Yuster, Generalizations of the Goulden-Jackson clus- ter method, J. Dierence Eq. Appl. 16:12,pp 1463-1480, 2010. [22] John Noonan1, New Upper Bounds for the Connective Constants of Self-Avoiding Walks, J. Statistical Physics, Vol. 91, Nos. 5/6, 1998 [23] R. Doroslovacki, Binary n-Words without the subword 1010 10, Novi SAD J. MATH., vol. 28, NO. 2 1998, 127-133. [24] R. Doroslovacki, n-Words over any alphabet with forbidden any 3-subwords, Novi SAD J. MATH., vol. 30, NO. 2 2000, 159-163. [25] R. Doroslovacki, The set of all the words of length n over any alphabet with a forbidden good subword, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 2(1993), 239-244. [26] R. Doroslovacki, The set of all the words of length n over alphabet f0,1 g with any forbidden subword of length three, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 25, 2(1995), 111-115. [27] R. Doroslovacki, On Binary n-words with forbidden 4-subwords, Novi SAD J. MATH., vol. 29, NO. 1, 1999, 27-32. [28] R. Doroslovacki, Binary n-Words without the subword 1010 10, Novi SAD J. MATH., vol. 28, NO. 2 1998, 127-133. [29] Leo J. Guibas and Andrew M. Odlyzko, Periods in Strings, J. Combinatorial Theory, series A 30, pp. 19-42, 1981. [30] Eric Rivals and Sven Rahmann, Combinatorics of periods in strings, J. Combinatorial Theory, series A 104, pp. 95-113, 2003. [31] http://oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-thealphabet- in-english [32] http://corpus.canterbury.ac.nz/descriptions/ [33] http://bcl?.comli.eu/?download-e?n.html [34] Chris Godsil and Gordon F. Royle, Algebraic Graph Theory, Springer, 2001. [35] Roger A. Horn and Charles R. Johnson, Matrix Analysis, 2nd edition, Cambridge University Press, 2012. [36] Kenneth M. Homan and Ray Kunze, Linear Algebra, 2nd edition, Pearson,1971.
|