跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖英皓
研究生(外文):Ying-Hao
論文名稱:活塞頂部之熱傳分析
論文名稱(外文):A Numerical Analysis of Heat Transfer on the Crown of the Piston
指導教授:傅武雄傅武雄引用關係
指導教授(外文):Wu-Shung Fu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:86
中文關鍵詞:活塞
外文關鍵詞:Piston
相關次數:
  • 被引用被引用:8
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:2
本文主要目的在以數值方法探討活塞內部加裝一冷卻渠道,觀察此冷卻渠道隨活塞做往復運動下,渠道內部流場和溫度場的變化,並討論冷卻流體對活塞高溫壁面的熱傳增益。
本研究採用葛拉金有限元素法,配合Arbitrary Lagrangian-Eulerian (ALE)座標描述方法,首先探討冷卻流體在往復運動下的流場和溫度場之變化,以瞭解這類問題的運動機制,並進而針對不同的活塞振盪頻率、振幅和流場雷諾數,比較其對活塞高溫壁面的熱傳增益。綜合所獲得的研究結果,當活塞運動後,會在活塞高溫壁面附近產生類似牽引和推擠流體現象,使得原本附在高溫壁面上之溫度邊界層受到擾動而被破壞和縮小,熱傳效果會有效提升。
The aim of the numerical analysis is to investigate the variations of flow and thermal fields in the cooling channel within the reciprocating piston, and discuss the heat transfer effect of the cooling flow on the heated crown of the piston.
At first, a Galerkin finite element formulation with ALE method is adopted to investigate the variations of the flow and thermal fields induced by the reciprocation of the piston. Then, this study will express the comparisons of the heat transfer effect on the heated surface of the piston reciprocating with different oscillating frequencies, oscillating amplitudes, and Reynolds numbers. Based on the above procedures, the results show that the reciprocating piston may draw and push the cooling flow. This phenomenon will destroy the thermal boundary layer and contract its thickness. Therefore, the heat transfer rate is enhanced more remarkably.
中文摘要 Ⅱ
英文摘要 Ⅲ
誌謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅶ
圖目錄 Ⅷ
符號說明 XI
第一章 緒論 1
第二章ALE座標描述方法之運動學理論與數學模式 8
第三章 物理模式 14
3.1 物理模式 14
3.2 統御方程式 14
3.3 初始條件與邊界條件 16
3.4 紐塞數計算 17
第四章 數值方法 22
4-1 流場數值計算 22
4-2溫度場數值計算 27
4.3 格點測試 29
第五章 結果與討論 34
5.1 不同振盪頻率對熱傳之影響 34
5.2 不同振盪振幅對熱傳之影響 40
5.3 不同流場雷諾數對熱傳之影響 42
第六章 結論與建議 79
6.1 結論 79
6.2 建議 80
參考文獻 81
附錄A 84
附錄B 86
1. P. P. Grassmann and M. Tuma, “Applications of the Electrolytic Method-Ⅱ. Mass Transfer within a Tube for Steady, Oscillating and Pulsating Flows”, International Journal of Heat and Mass Transfer, Vol. 22, pp. 799-804, 1979.
2. A.T. Patera and B.B. Mikic, “Exploiting Hydrodynamic Instabilities Resonant Heat Transfer Enhancement”, International Journal of Heat and Mass Transfer, Vol. 29, No. 8,pp. 1127-1138, 1986.
3. S. Y. Kim, B. H. Kang, and A. E. Hyun, “Heat Transfer in the Thermally Developing Region of a Pulsating Channel Flow”, International Journal of Heat and Mass Transfer, Vol. 36, No. 17, pp. 1257-1266, 1993.
4. S. W. Chang and L. M. Su, “Influence of Reciprocating Motion on Heat Transfer Inside a Ribbed Duct with Application to Piston Cooling in Marine Diesel Engines”, Journal of Ship Research, Vol. 41, No. 4, pp. 332-339.
5. W. F. Noh, “A time-dependent two-space-dimensional coupled Eulerian-Lagrangian code, in: B. Alder, S. Fernbach and M. Rotenberg, eds.”, Methods in computational Physics, Academic Press, New York, Vol. 3, p. 117, 1964.
6. C. W. Hirt, A. A. Amsden, and H. K. Cooks, “An arbitrary Lagrangian-Eulerian computing method for all flow speeds”, Journal of Computational Physics, Vol. 14, pp. 227-253, 1974.
7. T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann, “Lagrangian-Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 29, pp. 329-349, 1981.
8. A. Huerta and W. K. Liu, “Viscous flow with large free surface motion”, Computer Methods in Applied Mechanics and Engineering, Vol. 69, pp. 277-324, 1988.
9. T. Belytschko, D. P. Flanagan, and J. M. Kennedy, “Finite element methods with user-controlled meshes for fluid-structure interaction”, Computer Methods in Applied Mechanics and Engineering, Vol. 33, pp. 669-688, 1982.
10. A. Masud and T. J. R. Hughes, “A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equation for moving domain problems”, Computer Methods in Applied Mechanics and Engineering, Vol. 146, pp. 91-126, 1997.
11. 楊德良,張仁德,”結構物在風場中之數值模擬研究”,行政院國家科學員會專題研究計畫成果報告,1995。
12. 黃建平,”無塵室內工作人員移動對塵粒擴散之影響”,國立交通大學機械工程研究所碩士論文,1996。
13. 楊肅正,”穩定流場下剛體移動衍生之熱流現象”,國立交通大學機械工程研究所碩士論文,1997。
14. 楊肅正,”擺動矩形體在流動場中之流場與熱傳特性研究”,國立交通大學機械工程研究所博士論文,2000。
15. D. W. Pepper and J. C. Heinrich, “The finite element method: Basic concepts and applications”, Taylor&Francis, 1992.
16. T. Nomura and T. J. R. Hughes, “An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body”, Computer Methods in Applied Mechanics and Engineering, Vol. 95, pp. 115-138, 1992.
17. 林清貴,”往復運動對半封閉渠槽的流場與熱傳影響之數值模擬”,國立清華大學動力機械工程研究所碩士論文,2002。
18. 劉謹德,”通道內設凸起物往復運動時混合對流之熱傳研究”,國立成功大學造船暨船舶機械工程研究所碩士論文,2001。
19. 黃睿哲,”往復通道加裝凸起物紊流場觀察與數值模擬分析”,國立成功大學造船暨船舶機械工程研究所碩士論文,2001。
20. R. Temam, Navier Stokes Equations, 3rd Edition North Holland Amsterdam, 1984.
21. C. Cuvelier, A. Segal, and A. A. van Steenhoven, Finite Element Methods and Navier-Stokes Equations, 1st Edition, D. Reidel Publishing Company, 1986.
22. C. Taylor and T. G. Hughes, Finite Element Programming of The Navier-Stokes Equations, Pineridge Press Swansea, 1981.
23. B. M. Irons, “A Frontal Solution Program for Finite Element Analysis”, International Journal for Numerical Methods in Engineering, Vol.2, pp.5-32, 1970.
24. P. Hood, “Frontal Solution Program for Unsymmetric Matrices”, International Journal for Numerical Methods in Engineering, Vol.10, pp.379-399, 1976.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊