跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳振愷
研究生(外文):CHEN,CHEN-KAI
論文名稱:利用動態多準則決策探討消失性商源待修零附件解決方案之研究
論文名稱(外文):A Study of Probe Spare Parts for Repairs Solve Program of Diminishing Manufacturing Sources and Material Shortages Using Dynamic Multi-Attribute Decision
指導教授:賀增原賀增原引用關係
指導教授(外文):HEH,TZENG-YUAN
口試委員:賀增原楊福正紀岍宇温志皓劉思遠
口試委員(外文):HEH,TZENG-YUANYANG,FU-CHENGJI,CHIEN-YUWEN,CHIH-HAOLIOU,SY-YUAN
口試日期:2016-05-05
學位類別:碩士
校院名稱:國防大學
系所名稱:運籌管理學系
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:67
中文關鍵詞:消失性商源動態多準則決策權重灰關聯分析
外文關鍵詞:Diminishing Manufacturing Sources and Material ShortagesDynamic Multi-Attribute DecisionWeightGray Relational Analysis
相關次數:
  • 被引用被引用:9
  • 點閱點閱:529
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
由於現今科技的進步,製造技術快速發展,武器系統各項零附件其壽命週期平均僅4至7年即已達汰換更新年限。以致於大多數武器系統在進入量產時,即會遭遇到製造商源消失及物料短缺問題。
本研究目的在客觀的環境下,探討不同時期準則權重對方案之影響,來建構動態決策模型。其中運用問卷設計採用修正式德爾菲法,並將獲得的數據帶入後續的研究方法中。接著依據施測結果使用灰關聯分析以及逼近理想解方案排列法,選擇最適決策方案。其中時間權重值是以六個時間區段及分別以維修技術、組織變革及國防預算等變化求取,最後評量不同方案的排序。本研究結果期能提供國軍後勤相關計畫部門,未來面臨消失性零附件籌補決策中,能訂定一個明確、動態的參考模型,以提升國軍後勤整體戰力。

Due to progresses of modern technology and fast manufacture technology development, parts and accessories of a weapon system reaches their renewal years with merely 4 to 7 years in average, resulting in the instant encounter of Diminishing Manufacturing Sources and Material Shortages to most of the weapon systems entering their mass production.
This research aims to discuss influences to programs by criteria and weights in different time periods under an objective situation. We use Modified Delphi method to design our test questionnaires, and substitute the obtained data into the upcoming research methods. Then, the Grey Relational Analysis and TOPSIS were used to choose the fittest decision alternative based on test results. In this research, time weighting values are separated into six time periods and sought based on maintenance techniques, organizational reformation and national defense budgets. We expect the research result to provide information for the logistics-related departments of National Armed Forces, can build a clear and dynamic reference model, and to facilitate the overall strength of logistic forces when facing the decision making on Diminishing Manufacturing Sources and Material Shortages.

誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究範圍與限制 5
1.4 研究架構 6
第二章 文獻探討 8
2.1 國軍零附件消失性商源探討 8
2.1.1 DMSMS範圍 8
2.1.2 DMSMS管理模式 9
2.1.3 DMSMS解決方案 12
2.1.4 小結 12
2.2 決策權重之評估與選取 14
2.2.1 權重估算 14
2.2.2 權重方法 14
2.2.3 小結 15
2.3 動態多準則決策方法 15
2.3.1 多準則階段建立 16
2.3.2 多準則決策方法 17
2.3.3 小結 18
第三章 研究方法 22
3.1修正式德爾菲法(Modified Delphi Method) 22
3.1.1 專家訪談程序 24
3.1.2 問卷統計與分析 25
3.2 逼近理想解方案排列法(TOPSIS) 25
3.3 結合灰關聯數與TOPSIS計算 27
3.4 本章小結 31
第四章 實證結果與分析 32
4.1修正式德爾菲法問卷結果分析 33
4.2計算結果分析 38
4.3 本章小結 40
第五章 結論與建議 41
5.1結論 41
5.2未來建議 42
參考文獻 43
附錄1 47
附錄2 51
附錄3 56

王文科(2003)。教育研究法(增訂七版)。台北市:五南圖書。
王天哲(2005)。消失商源管理暨決策流程之研究。國防大學管理學院資源管理及決策研究所碩士論文,未出版,桃園縣。
吳有龍、楊倍箕、林瑞源(2009)。應用灰關聯分析與TOPSIS方法於遊戲廠商財務績效評估模式,管理科學研究,第5卷,第2期,頁23-44。
林承儀(2012)。自我回饋方式與休息時間對動態決策與情境覺察之影響。交通大學工業工程管理學系碩士論文,未出版,新竹市。
國防部(2013)。中華民國一0二年國防報告書。台北市:國防部「國防報告書」編撰委員會。
商少剛(2010)。藉由效益後勤(PBL)經驗探討空軍軍機商維模式。國防大學理工學院兵器系統工程碩士論文,未出版,桃園縣。
張偉哲、溫坤禮、張廷政(2000)。灰關聯模型方法與應用。台北市:高立。
張宏瑋(2005)。動態式準則評估於旅遊行程安排之最優化。大同大學資訊經營研究所碩士論文,未出版,台北市。
郭美滿(1999)。智教育教師專業知能之分析研究。國立彰化師範大學特教系博士論文,未出版,彰化市。
劉立民(2005)。以漢翔公司管理模式為例探討國軍零附件消失性商源問題。國防雜誌,第5卷,第2期,頁97-111。
楊宏光(1998)。權數方法之評估與選取。國防大學管理學院資源管理研究所碩士論文,未出版,台北市。
謝馥羽(2014)。利用動態多準則決策軍艦商維方案之研究。國防大學管理學院運籌管理學系碩士班碩士論文,未出版,台北市。

Atkins, P. W., Wood, R. E., & Rutgers, P. J. (2002). The effects of feedback format on dynamic decision making. Organizational Behavior and Human Decision Processes, 88(2), 587-604.
Brehmer, B. (1990). Strategies in real-time, dynamic decision making. University of Chicago Press.
Brehmer, B. (1992). Dynamic decision making: Human control of complex systems. Acta psychologica, 81(3), 211-241.
Cheng, S., Chan, C. W., & Huang, G. H. (2002). Using multiple criteria decision analysis for supporting decisions of solid waste management. Journal of Environmental Science and Health, Part A, 37(6), 975-990.
Chen, M. F., & Tzeng, G. H. (2004). Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Mathematical and Computer Modelling, 40(13), 1473-1490.
Dalkey, N. C., Brown, B. B., & Cochran, S. (1969). The Delphi method: An experimental study of group opinion. Rand Corporation Santa Monica, CA.
Diehl, E., & Sterman, J. D. (1995). Effects of feedback complexity on dynamic decision making. Organizational Behavior and Human Decision Processes, 62(2), 198-215.
Edwards, W. (1962). Dynamic decision theory and probabilistic information processings. Human Factors: The Journal of the Human Factors and Ergonomics Society, 4(2), 59-74.
Faherty, V. (1979). Continuing social work education: Results of a Delphi survey. Journal of Education for Social Work, 15(1), 12-19.
Gibson, F. P. (2000). Feedback delays: How can decision makers learn not to buy a new car every time the garage is empty? Organizational Behavior and Human Decision Processes, 83(1), 141-166.
Hsiao, N., & Richardson, G. P. (1999). In search of theories of dynamic decision making: a literature review. Paper presented at the 17th International Conference of the System Dynamics Society, Wellington, New Zealand. Retrieved February.
Hwang, C.L. & Yoon, K.(1981). Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, NY.
Janic, M.(2003). Multicriteria Evaluation of High-speed Rail, Transrapid Maglev, andAir Passenger Transport in Europe, Transportation Planning and Technology, 26(6), 491–512.
Ju-Long, D. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288-294.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society.
Kim, G., Park, C. S., & Yoon, K. P. (1997). Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. International Journal of Production Economics, 50(1), 23-33.
Kobus, D. A., Proctor, S., & Holste, S. (2001). Effects of experience and uncertainty during dynamic decision making. International Journal of Industrial Ergonomics, 28(5), 275-290.
Kwong, C. K., & Tam, S. M. (2002). Case-based reasoning approach to concurrent design of low power transformers. Journal of Materials Processing Technology, 128(1), 136-141.
Lai, Y. J., Liu, T. Y., & Hwang, C. L. (1994). Topsis for MODM. European Journal of Operational Research, 76(3), 486-500.
Lerch, F. J., & Harter, D. E. (2001). Cognitive support for real-time dynamic decision making. Information systems research, 12(1), 63-82.
Lin, M. C., Wang, C. C., Chen, M. S., & Chang, C. A. (2008). Using AHP and TOPSIS approaches in customer-driven product design process. Computers in Industry, 59(1), 17-31.
Lin, Y.-H., Lee, P.-C., & Ting, H.-I. (2008). Dynamic Multi-Attribute Decision Making Model with Grey Number Evaluations. Expert Systems with Applications, 35(4), 1638-1644.
Livingston, H. (2000). GEB1: Diminishing manufacturing sources and material shortages (DMSMS) management practices. Paper presented at the Proceedings of the DMSMS Conference.
Milani, A. S., Shanian, A., Madoliat, R., & Nemes, J. A. (2005). The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Structural and multidisciplinary optimization, 29(4), 312-318.
Moxnes, E. (2004). Misperceptions of basic dynamics: the case of renewable resource management. System Dynamics Review, 20(2), 139-162.
Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A Versatile Methodology for Conducting Qualitative Research. Review of Higher Education, 18(4), 423-436.
Rouwette, E. A., Größler, A., & Vennix, J. A. (2004). Exploring influencing factors on rationality: a literature review of dynamic decision‐making studies in system dynamics. Systems Research and Behavioral Science, 21(4), 351-370.
Rowe, G., Wright, G., & Bolger, F. (1991). Delphi: A reevaluation of research and theory. Technological forecasting and social change, 39(3), 235-251.
Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7), 801-813.
Shi, Y. (2013). Dynamic Multi-attribute Decision Making model based on intuitionistic trapezoidal fuzzy numbers. Paper presented at the 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering, 535-538.
Srdjevic, B., Medeiros, Y. D. P., & Faria, A. S. (2004). An objective multi-criteria evaluation of water management scenarios. Water resources management, 18(1), 35-54.
Taylor, R., Judd, L., Witt, S., & Moutinho, L. (1989). Delphi method applied to tourism. London.
Wheeller, B., Hart, T., & Whysall, P. (1990). Application of the Delphi technique: A reply to Green, Hunter and Moore. Tourism Management, 11(2), 121-122.
Xu, Z. (2008). On multi-period multi-attribute decision making. Knowledge-Based Systems, 21(2), 164-171.
Yang, T., & Chou, P. (2005). Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Mathematics and Computers in simulation, 68(1), 9-21.
Yoon, K. and Hwang, C.L.(1985), Manufacturing Plant Location Analysis by Multiple attribute decision making: Part I—single-plant strategy. International Journal of Production Research, 23(2), 345-359.
Yu, P. L. (1973). A class of solutions for group decision problems. Management Science, 19(8), 936-946.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top