跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃秋玉
研究生(外文):Ciou-yu Huang
論文名稱:應用超臨界二氧化碳電鍍鎳膜與鎳奈米線之研究
論文名稱(外文):Studies of electroplating Ni-film and Ni-nanowire in the supercritical carbon dioxide
指導教授:林昭任林昭任引用關係
指導教授(外文):Tsao-jen Lin
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:106
中文關鍵詞:超臨界鎳電鍍
外文關鍵詞:supercritical fiuld、electroplating Ni
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1047
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用超臨界二氧化碳(SC-CO2)電鍍來探討平面鎳電鍍特性變化,並應用此技術在陽極氧化鋁膜板製備鎳奈米線。結果發現在SC-CO2電鍍下,鎳膜為多結晶之結構;並且晶粒尺寸隨著壓力的增加而減小,推論可能是壓力可以加快成核速率與超臨界下形成的乳化鍍液具有脈衝電鍍效果,導致晶粒尺寸減小;此外,由於SC-CO2下可將晶粒細化並且減少鍍膜孔隙度,於壓力10.2MPa之硬度值可達8.29GPa,相較於常壓鎳膜硬度2GPa,在SC-CO2電鍍製程下可將鎳膜硬度值提升高達4倍。利用陽極氧化鋁(anodic aluminum oxide)膜板電鍍製備鎳奈米線,由於超臨界流體低表面張力以及高質傳特性,在SC-CO2下進行奈米孔洞電鍍反應,具有較佳之塡孔沉積效果。並且鎳奈米線亦為多結晶結構,晶粒尺寸同樣隨著壓力的增加而減小。鎳膜與鎳奈米線在磁性上之矯頑磁力(coercive field)與角形比(squareness ratio) 亦隨著壓力的增加而降低。
This study is to investigate the characteristic of nickel electroplating in supercritical carbon dioxide (SC-CO2) electroplating process, and to apply this technology to produce Ni-nanowires in anodic aluminum oxide template. It is found that the Ni-film is polycrystalline structure and grain size of the Ni-film decrease with increasing pressure under SC-CO2 electroplating. The reasons could be attributed to: (i) pressure can induce nucleation rate and (ii) the emulsified electrolyte by SC-CO2 acts like pulsation electroplating, leading to a decrease in grain size. In addition, because fine grain size and reduce porosity of the Ni-film under SC-CO2 electroplating. The hardness of the Ni-film in the pressure 10.2MPa to reach 8.29GPa and is about four-time higher than that by ambient electroplating (2GPa). Due to SC-CO2 having the advantages of low surface tension and high mass transfer, the electrolyte can be brought into nanopores, leading to an enhancement of the Ni-nanowire filling rate in anodic aluminum oxide template. Ni-nanowire and Ni-film is like polycrystalline structure and also decreases with increasing pressure. Both of produced Ni-film and Ni-nanowire have the same decreasing trend in coercive field and squareness ratio as increasing pressure.
目錄

中文摘要………………………………………………I
Abstract………………………………………………II
目錄….………………………………………………III
圖目錄…………………………………………………VII
表目錄…………………………………………………X
符號表…………………………………………………XII

第一章 緒論…………………………………………………………1
第二章 文獻回顧……………………………………………………3
2.1電鍍………………………………………………………………3
2.1.1 前言..………………………………………………………3
2.1.2鎳電鍍…………………………………………………………3
2.1.3鎳奈米線電鍍…………………………………………………8
2.2超臨界鎳電鍍……………………………………………………13
2.2.1 超臨界流體…………………………………………………13
2.2.2 SC-CO2………………………………………………………14
2.2.3 超臨界鎳電鍍………………………………………………18
2.3 陽極氧化鋁 (Anodic Aluminum Oxide)……………………22
2.3.1 陽極氧化鋁…………………………………………………22
2.3.2 阻礙層(Barrier layer)效應……………………………23
2.3.3 陽極處理……………………………………………………25
2.4 研究動機與目的………………………………………………27
第三章 實驗方法與步驟……………………………………………28
3.1 藥品與儀器……………………………………………………28
3.1.1 藥品…………………………………………………………28
3.1.2 儀器…………………………………………………………28
3.2 實驗架構與流程圖……………………………………………29
3.2.1 實驗流程架構圖……………………………………………30
3.3 超臨界電鍍系統架設及其電導度量測………………………31
3.3.1 超臨界電鍍實驗架設………………………………………31
3.3.2 電導度量測…………………………………………………32
3.4 陽極氧化膜(AAO)製作………………………………………34
3.4.1 AAO製作……………………………………………………34
3.4.2 AAO製作流程………………………………………………34
3.4.3 降電壓程序操作.…………………………………………38
3.5 鎳電鍍………………………………………………………39
3.5.1 電鍍前處理………………………………………………39
3.5.2 銅上鎳電鍍………………………………………………39
3.5.3 AAO鎳電鍍………………………………………………41
3.6 試片分析處理與分析儀器介紹……………………………42
3.6.1 試片處理…………………………………………………42
3.6.2 儀器分析介紹……………………………………………43
第四章 結果與討論……………………………………………49
4.1 電導度討論…………………………………………………49
4.2 鎳膜探討……………………………………………………54
4.2.1 表面形貌分析……………………………………………54
4.2.2 結晶構造分析……………………………………………58
4.2.3 機械性質分析……………………………………………62
4.2.4 磁性分析…………………………………………………65
4.3 鎳奈米線探討………………………………………………68
4.3.1  AAO形態觀察……………………………………………68
4.3.2 阻礙層(barrier layer)對奈米線沉積分析…………68
4.3.3 結晶構造與磁特性分析…………………………………74
4.3.4 填孔效果比較……………………………………………79
4.3.5 Pt基材對鎳奈米線的結構變化探討……………………85
第五章 結論與未來展望…………………………………………89
5.1 結論…………………………………………………………89
5.1.1 鎳膜………………………………………………………89
5.1.2 鎳奈米線…………………………………………………90
5.2 建議與展望…………………………………………………91
參考文獻…………………………………………………………92

圖目錄

圖2-1  超臨界流體之壓力、溫度圖…………………………13
圖2-2  形成乳化之三種形式…………………………………17
圖2-3  AAO形成結構圖………………………………………23
圖2-4  在陽極處理後進行降電壓程序之AAO結構示意圖…25
圖2.5  以降電壓程序修飾後阻礙層結構示意圖……………25
圖3-1  實驗流程架構圖………………………………………30
圖3-2  超臨界整體實驗架構圖示意圖………………………31
圖3-3  電導度量測示意圖……………………………………33
圖3-4  AAO形成過程示意圖…………………………………35
圖3-5  陽極處理實驗裝置圖…………………………………36
圖3-6  AAO製備之流程圖……………………………………37
圖3-7  電鍍鎳實驗裝置示意圖………………………………40
圖3-8  AAO試片後續處理示意圖……………………………43
圖3-9  常壓鎳電鍍實驗步驟流程圖…………………………46
圖3-10 超臨界鎳電鍍實驗步驟流程圖………………………47
圖4-1  45℃下,在不同轉速與操作壓力對電導度的變化圖………52
圖4-2  轉速350rpm下,不同溫度之操作壓力對相對電導度變化圖………52
圖4-3  轉速350rpm下,不同溫度之操作壓力對溶解CO2體積比
變化圖………53
圖4-4  不同操作壓力下(0.1MPa~17MPa)之鍍膜SEM圖………56
圖4-5  不同操作壓力下(0.1MPa~17MPa)之鍍膜AFM圖………57
圖4-6  不同壓力下鎳膜對表面粗糙度之關係圖………………58
圖4-7  不同壓力(0.1MPa~20.4MPa)下鎳膜之XRD圖…………60
圖4-8  不同壓力下對晶粒尺寸之關係圖………………………61
圖4-9  晶粒大小尺寸變化對硬度之關係圖……………………62
圖4-10 不同操作壓力下鎳膜,以垂直磁場之極化曲線圖……66
圖4-11 不同壓力對經由磁滯曲線量測鎳膜的矯頑磁力關係圖…67
圖4-12 AAO表面以及截面之SEM圖(草酸系統)…………………68
圖4-13 未移除AAO阻礙層之SEM圖………………………………69
圖4-14 未移除阻礙層之AAO鎳奈米線沉積示意圖……………70
圖4-15 AAO移除阻礙層後鎳奈米線沉積示意圖…………………72
圖4-16 AAO底部鎳奈米線沉積以及阻礙層薄膜之SEM圖………73
圖4-17 不同壓力下AAO中鎳奈米線之XRD圖……………………75
圖4-18 20.4MPa壓力下AAO中鎳奈米線之XRD圖………………76
圖4-19 在不同壓力下AAO孔洞中鎳奈米線之極化曲線圖……………78
圖4-20 經由極化曲線量測鎳奈米線之矯頑磁力與壓力的關係圖………79
圖4-21 AAO表面以及截面之SEM圖(硫酸系統)…………………80
圖4-22 常壓電鍍之鎳奈米線表面以及截面之SEM與BEI圖………82
圖4-23 SC-CO2電鍍之鎳奈米線表面以及截面之SEM與BEI圖……84
圗4-24 壓力0.1 MPa與10.2 MPa下AAO孔洞中鎳奈米線的截面
SEM圖……………………………………………………………86
圗4-25 壓力10.2 MPa下AAO孔洞中鎳奈米線的截面SEM圖………86
圗4-26 AAO-Pt基材、0.1 MPa與10.2 MPa的鎳奈米線XRD圖……88
圗4-27 壓力10.2 MPa下電鍍AAO之鎳奈米線的TEM圖……………88

表目錄

表2-1  機械性質探討之相關文獻…………………………………………7
表2-2  鎳奈米線之相關文獻………………………………………………11
表2-3  液態、氣態和超臨界態之基本物理性質…………………………14
表2-4  物質之超臨界流體參數……………………………………………15
表2-5  超臨界鎳電鍍之相關文獻…………………………………………21
表2-6  陽極處理參數條件對孔洞氧化膜形態之影響……………………26
表3-1  電導度量測之實驗操作參數………………………………………33
表3-2  草酸與硫酸系統陽極處理參數條件………………………………36
表3-3  鎳電鍍鍍液成分……………………………………………………48
表3-4  銅片鎳電鍍常壓實驗操作條件……………………………………48
表3-5  銅片超臨界鎳電鍍實驗操作條件…………………………………48
表3-6  AAO鎳電鍍常壓實驗操作條件……………………………………48
表3-7  AAO超臨界鎳電鍍實驗操作條件…………………………………48
表4-1  不同壓力下鎳膜對表面粗糙度之比較……………………………58
表4-2 以Scherrer formula推算不同壓力對晶粒尺寸之變化值………60
表4-3  壓力、結晶顆粒大小與硬度的相關數值…………………………64
表4-4  不同操作壓力下鎳膜所得極化曲線之矯頑磁力以及角形比……65
表4-5  不同壓力之極化曲線測得之鎳奈米線矯頑磁力與角形比………78
參考文獻
田福助, “電化學-理論與應用”, 1991, 高立圖書有限公司.

賴耿陽, “時用電鍍技術全集”, 1998, 復漢出版社.

賴耿陽, “鋁之表面處裡”, 1998,復漢出版社.

張立德, “奈米材料”, 2002,五南圖書出版股份有限公司.

汪建民, “材料分析”, 1998,中國材料科學學會.

曹恆光, 連大成, “淺談微乳液”, 物理雙月刊, , 2001, 23, 488-493.

黃榮俊, “磁性薄膜與多層膜之成長、觀測與應用”, 2001, 科學發展月刊, 29, 155-162.

郭子禎,“環保洗淨心技術-CO2的神奇應用”, 2006, 科學發展月刊, 400, 30-35.

Budevski, E., G. Staikov, W.J. Lorenz, “Electrocrystallization. Nucleation and growth phenomena”, Electrochim. Acta., 2000, 45, 2559-2574.

Bakonyi, I., E. T. Kadar, L. Pogany, A. Cziraki, I. Gerocs, K. V. Josepovits, B. Arnold, K. Wetzig, “Preparation and characterization of d.c.-plated nanocrystalline nickel electrodeposits”, Surf. Coat. Technol., 1996, 78, 124-136.

Cullity, B.D., “Introduction to magnetic materials”, Reading, Mass.,
Addison-Wesley Pub. Co., 1972.

Ciszewski, A., S. Posluszny, G. Milczarek, M. Baraniak, “Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte”, Surf. Coat. Technol., 2004, 183, 127-133.

Dhanuka, V. V., J. L. Dickson, W. Ryoo, K. P. Johnston, “High internal phase CO2-in-water emulsions stabilized with a branched nonionic hydrocarbon surfactant”, Journal of Colloid and Interface Science, 2006, 298, 406-418.

Erb, U., “Electrodeposited nanocrystals:Synthesis, properties and industrial applications”, Nanostructured Materials, 1995, 6, 533-538.

EI-Sherik, A.M., U. Erb, J. Page, “Microstructural evolution in pulse plated nickel electrodeposits”, Surf. Coat. Technol., 1996, 88, 70-78.

Hong, K.-M., M.-S. Kim, J.G. Chung, “Characteristics of nickel film electroplated on a copper substrate in supercritical CO2”, J. Ind. Eng. Chem., 2004,10, 683-689.

Jeong, D.H., F. Gonzalez, G. palumbo, k.T. Aust, U. Erb, “The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings”, Scripta Mater., 2001, 44, 493-499.

Jensen, J. A.D., P. O.A. Persson, K. Pantleon, M. oden, L. Hultman, M. A.J. Somers, “Electrochemically deposited nickel membranes; process- microstructure-property relationships”, Surf. Coat. Technol., 2003, 172, 79-89.

Kozlov, V.M., L. P. Bicelli, “Formation of structural defects during metal electrocrystallization”, Journal of Crystal Growth, 1996, 165, 421-428.

Kozlov, V.M., L. P. Bicelli, “Texture formation of electrodeposited fcc metals”, Materials Chemistry and Physics, 2002, 77, 289-293.

Luna, C., P. Morales, C. J. Serna, M. Vazquez, “Multidomain to single-domain transition for uniform Co80Ni20 nanoparticals”, Nanotechnology, 2003, 14, 268-272.

Masuda, H. and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina”, Science, 1995, 268, 1466-1468.

Mchard, J. and S.P. Sawan,“Supercritical Fluid Cleaning, Fundamentals, Technology and Applications”, William Andrew Publishing/Noyes, 1998, 1-21.

Mei, Y., L. Jian-hua, L. Song-mei, “Electrochemical modification process of anodic alumina membrane”, Trans. Nonferrous Met. Soc., 2006, 16, s681-s684.

Meng, G., A. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima, P. M. Ajayan, “Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template”, Journal of Applied Physics, 2005, 97, 064303.

Mishra, R., B. Basu, R. Balasubramaniam, “Effect of grain size on the tribological behavior of nanocrystalline nickel”, Materials Science and Engineering A, 2004, 373, 370-373.

Mizushimaa, A., M. Sonea, H. Yan, T. Nagai, K. Shigehara, S. Ichihara, S. Miyata, “Nanograin deposition via an electroplating reaction in an emulsion of dense carbon dioxide in a nickel electroplating solution using nonionic fluorinated surfactant”, Surf. Coat. Technol., 2005, 194, 149-156.

Nielsch, K., F. Muller, A.P. Li, U. Gosele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition”, Adv. Mater., 2000, 12, 582-586.

Nielsch, K., R.B. Wehrspohn, S.F. Fischer, H. Kronmüller, J. Barthel, J. Kirschner, U. Gösele, “Magnetic properties of 100 NM-period nickel nanowire arrays obtained from ordered porous-alumina templates”, Mat. Res. Soc. Symp. Proc., 2001, 636, D1.9.1-D1.9.6.

Palibroda, E., A. Lupsan, S. Pruneanu, M. Savos, “Aluminium porous oxide growth. On the electric conductivity of the barrier layer”, Thin Solid Films., 1995, 256, 101-105.

Pan, H., J. Lin, Y. Feng, H. Gao, “Electrical-bridge model on the self-organized growth of nanopores in anodized aluminum oxide”, IEEE, 2004, 3, 462-467.

Pan, H., B. Liu, J. Yi, C. Poh, S. Lim, J.Ding, Y. Feng, C. H. A. Huan, J.Lin, “Growth of Single-Crystalline Ni and Co Nanowires via Electrochemical Deposition and Their Magnetic Properties”, J. Phys. Chem. B, 2005, 109, 3094-3098.

Pan, H., H. Sun1, C. Poh1, Y. Feng, J. Lin, “Single-crystal growth of metallic nanowires with preferred orientation”, Nanotechnology , 2005, 16, 1559–1564.

Park, J.-Y., J. S. Lim, C. H. Yoon, C.H. Lee, K. P. Park, “Effect of a fluorinated Sodium bis(2-ethylhexyl) Sulfosuccinate (Aerosol-OT,AOT) Analogue surfactant on the interfacial tension of CO2+water and CO2+Ni-plating solution in near- and supercritical CO2” , J. Chem. Eng. Data, 2005, 50, 299-308.

Patterson, A.L., “The Scherrer foumula for X-ray particle size determination”, Physical Review, 1939, 56, 978-982.

Phelps, C. L., N. G. Smart, C. M. Wai, “Past, present, and possible future application of supercritical fluid extraction technology”, Journal of Chemical Education, 1996, 73, 1163-1168.

Qu, N.S., D. Zhu, K.C. Chan, W.N. Lei, “Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density”, Surf. Coat. Technol., 2003, 168, 123-128.

Saedi, A. and M. Ghorbani, “Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template”, Mater. Chem. Phys., 2005, 91, 417-423.

Sarabi, R.S. and Shingh, V.B., “Characteristics of electrodeposited nickel from mixed organic solvents”, Met. Finish., 1998, 26-30.

Schuh, C.A., T.G. Nieh, T. Yamasaki, “Hal–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel”, Scripta Mater., 2002, 46, 735-740.

Sellmyer, D. J., M. Zheng, R. Skomski, “Magnetism of Fe, Co and Ni nanowires in self-assembled arrays”, Journal of Physics: Condensed Matter, 2001, 13, R433-R460.

Szeptycka, B. and D. Derewnicka, “Preparation and characterization of d.c.-plated nanocrystalline nickel deposits”, Acta Physica Polonica A, 2002, 102, 199-205.

Switzer, J. A., H. M. Kothari, E. W. Bohannan, “Thermodynamic to kinetic transition in epitaxial electrodepodition”, The Journal of Physical Chemistry B, 2002, 106, 4027-4031.

Tian, F., J. Zhu, D. Wei, Y. T. Shen, “Magnetic field assisting DC electrodeposition: General methods for high-performance Ni nanowire array fabrication”, J. Phys. Chem. B, 2005, 109, 14852-14854.

Wang, H. and H. Wang, “Thick and macroporous anodic alumina membranes for self-lubricating surface composites”, Appl. Surf. Sci., 2005, 249, 151-156.

Wakabayashi, H., N. Sato, M. Sone, Y. Takada, H. Yan, K. Abe, K. Mizumoto, S. Ichihara, S. Miyat, “Nano-grain structure of nickel films prepared by emulsion plating using dense carbon dioxide”, Surf. Coat. Technol., 2005, 190, 200-205.

Whitney, T. M., J. S. Jiang, P.C. Searson, C. L. Chien, “Fabrication and Magnetic Properties of Arrays of Metallic Nanowires”, Science, 1993, 261, 1316-1319.

Yao, B., H.C. Guo, J. Wang, B.Z. Ding, H. Li, A.M. Wang, Z.Q., Hu, “Influence of pressure on the grain sizes in the crystallization process of an amorphous Fe-Mo-Si-B alloy”, Phys. B, 1996, 228, 379-382.

Yang, B., H. Vehoff, “Grain size effects on the mechanical properties of nanonickel examined by nanoindentation”, Materials Science and Engineering :A, 2005, 400-401, 467-470.

Yoshida, H., M. Sone, A. Mizushima, K,Abe, X.T. Tao, S. Ichihara, S.Miyata, “Electroplating of nanostructured nickel in emulsion of supercritical carbon dioxide in electrolyte solution” , Chem. Lett., 2002, 11, 1086-1087.

Yan, H., M. Sone, No. Sato, S. Ichihara, S. Miyata, “The effects of dense carbon dioxide on nickel plating using emulsion of carbon dioxide in electroplating solution”, Surf. Coat. Technol., 2004, 182, 329-334.

Yin, A. J., J. Li, W. Jian, A. J. Bennett, J. M. Xu, “Fabrication of highly ordered metallic nanowire arrays by electrodeposition”, Appl. Phys. Lett., 2001, 79, 1039-1041.

Yoshida, H., M. Sone, A. Mizushima, H. Yan, H. Wakabayashi, K. Abe, X. T. Tao, S. Ichihara, S. Miyata, “Application of emulsion of dense carbon dioxide in electroplating solution with nonionic surfactants for nickel electroplating” , Surf. Coat. Technol., 2003,173, 285–292.

Yoshida, H., M. Sone, H. Wakabayashi, H. Yan, K. Abe, X. T. Tao, A. Mizushima, S. Ichihara, S. Miyata, “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film” , Thin Solid Films., 2004, 446, 194–199.

Zhuang, Y. Z., J. Z. Jiang, T.J. Zhou, H. Rasmussen, L. Gerward, “Pressure effects on Al89La6Ni5 amorphous alloy crystallization”, Appl. Phys. Lett., 2000, 77, 4133-4135.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top