跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余宜宸
研究生(外文):Yu, Yi-Chen
論文名稱:輻射變色凝膠紫外線劑量計之研究
論文名稱(外文):Study on a Radiochromic Gel Dosimeter
指導教授:謝玲鈴謝玲鈴引用關係
指導教授(外文):Hsieh, Ling-Ling
口試委員:呂春美徐惠麗
口試委員(外文):Lu, Chun-MeiShyu, Huey-Lih
口試日期:2014-06-12
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:63
中文關鍵詞:變色凝膠滕氏藍田口方法
外文關鍵詞:Taguchi methodTurnbull blueRadiochromic gel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究以滕氏藍(Turnbull Blue)染料作為新型變色凝膠劑量計之變色主要成分,並以洋菜作為凝膠劑量計之基質。凝膠經由紫外線照射後,發生化學反應產生明顯的顏色變化,正比於所吸收到的輻射劑量。研究初期以田口實驗設計法探討滕氏藍變色凝膠劑量計各成份影響度及交互作用之特性,以及找尋滕氏藍變色凝膠劑量計之最佳配方。進階探討滕氏藍變色凝膠劑量計之靈敏度、線性度以及擴散現象。田口實驗設計法採用四因子兩水準之L16直交表,四個因子分別為(A)氯化鐵的濃度(B)赤血鹽的濃度(C)硫酸的濃度以及(D)洋菜的濃度。凝膠劑量計經由紫外線照射後,於最高波鋒695nm 處測量吸收度之變化。經由ANOVA分析結果可以發現AC、BC以及ABC為顯著交互作用之因子。硫酸(因子C)為最重要的影響因子,於兩因子交互作用以及三因子交互作用中佔有非常重要的位置,而洋菜(因子D)為影響力最小之因子。劑量計之最佳配方為氯化鐵1.23 mM、赤血鹽1.21 mM、硫酸1mM以及洋菜0.25%,線性度(R2)可達0.9988而靈敏度(slope)為0.3491。擴散現象觀察結果顯示劑量計照射後變色反應約1小時漸趨於穩定,擴散係數約為0.1181 mm2/h。
 In this study, the Taguchi statistical method was used to design experiments for investigating the effects of interactions among compositions on the performance of a Turnbull blue gel (TBG) radiochromic dosimeter. Four parameters were considered as the design factors: (A) concentration of ferric chloride (B) concentration of potassium ferricyanide, (C) concentration of sulfuric acid, and (D) amount of gelling agent added. Two levels were selected for each factor. The change in optical absorbance at 695 nm under UVA exposures was monitored to determine the response of the dosimeters. The results showed that the contributions of factors A to D were 20.01%, 23.16%, 27.03%, and 0.49%, respectively. The contributions of significant interaction effects were AC (8.60%), BC (5.61%), and ABC (10.56%). This finding indicated that sulfuric acid (C) was the most influential factor whereas gelling agent (D) was the least influential factor. Sulfuric acid had an important function in two two-way interactions and one three-way interaction in the response of TBG to UV exposure. From the results showed that the 1.23 mM ferric chloride, 1.21 mM potassium ferricyanide, 1 mM sulfuric acid and 0.25% w/mL agarose were the best concentration of the TBG radiochromic dosimeter, linearity up to 0.9988 and sensitivity of 0.3491.
The observation on diffusion showed that the dosimeter tended to be stable an hour after irradiated, with diffusion coefficient of 0.1181 mm2/h.

目錄
誌謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 序論 1
1.1.引言 1
1.2. 研究動機 3
第二章 文獻回顧 4
2.1劑量計發展史 4
2.2 染料類凝膠劑量計組成及反應機制 8
2.2.1 弗立克劑量計(Fricke gel xylenol orange,FXG) 8
2.2.2滕式藍凝膠劑量計(Turnbull blue gel dosimeter, TBG) 9
2.3 凝膠劑量計之量測工具 10
2.3.1光學電腦斷層掃描儀(Optical-Computed Tomography) 10
2.3.2 感光耦合元件照相機CCD (Charge-Coupled Device ) camera 11
2.3.3分光光譜儀(UV-Visible Spectrophotometer) 12
2.4 田口實驗設計法 13
第三章 材料與方法 18
3.1 凝膠製備 19
3.1.1 TBG凝膠劑量計之製備 19
3.1.2弗立克劑量計(Fricke gel xylenol orange,FXG)之製備 21
3.2 變色凝膠劑量計照射及量測 21
3.3 田口方法(Taguchi Methods) 24
3.4擴散現象實驗 27
第四章 結果與討論 29
4.1滕式藍變色凝膠劑量計之特性 29
4.2田口實驗設計法 30
4.2.1因子之間交互作用及貢獻度 32
4.3 滕式藍凝膠劑量計之最佳配方 42
4.4 滕式藍凝膠劑量計之擴散效應觀察 43
第五章 結論 45
第六章 未來展望 46
參考文獻 47

圖目錄

圖1、紫外線光譜 2
圖2、光學電腦斷層掃描儀運作示意圖 10
圖3、 分光光譜儀之原理作用圖 12
圖4、 L16(2^15) 點線圖 15
圖5、實驗設計流程圖 18
圖6、TBG製備流程圖 20
圖7、 紫外線照射器內、外觀 22
圖8、 UVX-36 radiometer 23
圖9、分光光譜儀(Chrom Tech-8600 Double Beam Spectrophotometer) 23
圖10、CCD camera 23
圖11、壓克力片匣 27
圖12、滕式藍凝膠劑量計之樣品圖 29
圖13、 0分鐘(未照射)與照射8分鐘全波段 30
圖14、因子A(氯化鐵)與因子B(赤血鹽)之交互作用圖 34
圖15、因子B(赤血鹽)與因子C(硫酸)之交互作用圖 34
圖16、因子A(氯化鐵)與因子C(硫酸)之交互作用圖 35
圖17、因子A(氯化鐵)與因子D(洋菜)之交互作用圖 35
圖18、因子B(赤血鹽)與因子D(洋菜)之交互作用圖 36
圖19、因子C(硫酸)與因子D(洋菜)之交互作用圖 36
圖20、ABC三因子之交互作用圖 37
圖22、BCD三因子之交互作用圖 39
圖23、ACD三因子之交互作用圖 40
圖24、各因子反應圖(S/N值) 42
圖25、最佳配方之校正曲線 43
圖26、擴散效應時間觀察 44

表目錄

表1、凝膠劑量計之發展史 6
表2、TBG凝膠所使用的藥品及規格 19
表3、Fricke凝膠所使用的藥品及規格 21
表4、UV-A燈管規格與特性 22
表5、 因子及水準代表意義 24
表6、 田口L16交互作用直交表 26
表7、 田口方法實驗結果原始資料 31
表8、ANOVA變異數分析 33

[1] http://zh.wikipedia.org/wiki/%E6%B8%B8%E9%9B%A2%E8%BC%BB%E5%B0%84
[2] Butson, E. T., Peter, K. N., & Butson, M. J. (2013). Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film. Physics in medicine and biology, 58(21), N287.
[3] http://www.unsun.com.tw/knowledge_uv03.html
[4] Butson, E. T., Peter, K. N., & Butson, M. J. (2013). Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film. Physics in medicine and biology, 58(21), N287.
[5] Abukassem, I., & Bero, M. A. (2012). Radiometric characterization of radiochromic gel material applied for UVA radiation dosimetry. Radiation Measurements, 47(1), 34-39.
[6] Thieden, E., Philipsen, P. A., & Wulf, H. C. (2006). Compliance and data reliability in sun exposure studies with diaries and personal, electronic UV dosimeters. Photodermatology, photoimmunology & photomedicine, 22(2), 93-99.
[7] Butson, M. J., Yu, P. K., Cheung, T., & Metcalfe, P. (2003). Radiochromic film for medical radiation dosimetry. Materials Science and Engineering: R: Reports, 41(3), 61-120.
[8] Hart, E. J. (1955). Radiation chemistry of aqueous ferrous sulfate-cupric sulfate solutions. Effect of γ-rays. Radiation Research, 2(1), 33-46.
[9] Day, M. J., & Stein, G. (1950). Chemical effects of ionizing radiation in some gels.
[10] Alexander P, Charlesby A and Ross M (1954) The degradation of soild polymethylmethacry by ionizing radiations. Proc. R. Soc. A 223 392
[11] Hoecker, F. E., & Watkins, I. W. (1958). Radiation polymerization dosimetry. The International journal of applied radiation and isotopes, 3(1), 31-35.
[12] Wakabayashi, M., Irie, G., Shibata, S., Kawanishi, S., Suzaki, K., Sugawara, T.& Oyama, O. (1963). Studies on Radiation Dosimetry by a Solid Color Changing Substance (Solid Color Radiation Dosimetry). Journal of radiation research, 4(2-3-4), 68-79.
[13] Fricke, H., & Hart, E. J. (1966). Chemical dosimetry. Radiation dosimetry, 2, 167-239.
[14] Senden, R. J., De Jean, P., McAuley, K. B., & Schreiner, L. J. (2006). Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Physics in medicine and biology, 51(14), 3301.
[15] Gore, J. C., & Kang, Y. S. (1984). Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Physics in medicine and biology, 29(10), 1189.
[16] Kron, T., Jonas, D., & Pope, J. M. (1997). Fast T< sub> 1 imaging of dual gel samples for diffusion measurements in NMR dosimetry gels. Magnetic resonance imaging, 15(2), 211-221.
[17] Baldock, C., Harris, P. J., Piercy, A. R., & Healy, B. (2001). Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method. Australasian Physics & Engineering Sciences in Medicine, 24(1), 19-30.
[18] 徐雪春(2006)輻射變色薄膜研究 (Doctoral dissertation,四川大學).
[19] McLaughlin, W. L., Puhl, J. M., & Miller, A. (1995). Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma and electron radiation. Radiation Physics and Chemistry, 46(4), 1227-1233.
[20] Clark, E. L., Krushelnick, K., Davies, J. R., Zepf, M., Tatarakis, M., Beg, F. N. & Dangor, A. E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Physical Review Letters, 84(4), 670.
[21] Šolc, J., Sochor, V., Kačur, M., & Šmoldasová, J. (2010). 3D dose distribution measurements in brachytherapy using radiochromic gel dosimeters. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 619(1), 163-166.
[22] Jin, C., Chen, J., Yang, L., Luo, W., Wu, G., & Zha, Y. (2012). Effect of DMSO on the sensitivity and diffusion of FPGX gel dosimeter. Radiation Physics and Chemistry, 81(7), 879-883.
[23] Kovács, A., Baranyai, M., Wojnárovits, L., Moussa, A., Othman, I., & McLaughlin, W. L. (1999). Aqueous-ethanol nitro blue tetrazolium solutions for high dose dosimetry. Radiation Physics and Chemistry, 55(5), 799-803..
[24] Skyt, P. S., Kinnari, T. S., Wahlstedt, I., Yates, E. S., Muren, L. P., Petersen, J. B., & Balling, P. (2013, June). Diffusion properties of a radiochromic hydrogel dosimeter. In Journal of Physics: Conference Series (Vol. 444, No. 1, p. 012038). IOP Publishing.
[25] Balog, J., Wojnárovits, L., & Schiller, R. (1999). Radiation chemical formation and precipitation of Turnbull blue from Fe (III)-oxalate. Radiation Physics and Chemistry, 55(5), 483-487.
[26] Šolc, J., & Spěváček, V. (2009). New radiochromic gel for 3D dosimetry based on Turnbull blue: basic properties. Physics in medicine and biology, 54(17), 5095.
[27] Šolc, J., Sochor, V., & Spěváček, V. (2010, November). Influence of gelling agents on the dosimetric performance of the Turnbull Blue gel dosimeter. In Journal of Physics: Conference Series (Vol. 250, No. 1, p. 012013). IOP Publishing.
[28] Šolc, J., & Spěváček, V. (2009). New 3D radiochromic gel dosimeters with inhibited diffusion. In Journal of Physics: Conference Series (Vol. 164, No. 1, p. 012047). IOP Publishing.
[29] Šolc, J., & Sochor, V. (2012). Feasibility of radiochromic gels for 3D dosimetry of brachytherapy sources. Metrologia, 49(5), S231.
[30] Hsieh, L. L., Cheng, K. Y., & Hsieh, B. T. (2012). A novel thin NIPAM gel cassette dosimeter for photon-beam radiotherapy. PloS one, 7(3), e31836.
[31] Lucas Nonatode Oliveira , Francisco Glaildo Almeida Sampaio.(2014) Measurements of the Fe3+ diffusion coefficient in Fricke Xylenol gel using optical density measurements. Radiation and Isotopes, Volume 90, Pages 241-244
[32] Vávrů, K., Kozubíková, P., Šolc, J., & Spěváček, V. (2014). Characteristics of polyacrylamide gel with THPC and Turnbull blue gel dosimeters evaluated using optical tomography. Radiation Physics and Chemistry.
[33] Shieh, J. I., Cheng, K. Y., Shyu, H. L., Yu, Y. C., & Hsieh, L. L. (2014). Effects of composition interactions on the response of a turnbull blue radiochromic gel dosimeter. Radiation Physics and Chemistry.
[34] Schreiner, L. J. (2004, January). Review of Fricke gel dosimeters. In Journal of Physics: Conference Series (Vol. 3, No. 1, p. 9). IOP Publishing.
[35]. CAO, F., YANG, L., CHEN, J., LIN, H., FAN, J., RONG, L. & WU, G. (2009). A study on Fricke-PVA-xylenol orange hydrogel dosimeter for E-beam radiotherapy. Nuclear Science and Techniques, 20, 152-156.
[36] Hatchard, C. G., & Parker, C. A. (1956). A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 235(1203), 518-536.
[37] Šolc, J., Sochor, V., Kačur, M., & Šmoldasová, J. (2010). 3D dose distribution measurements in brachytherapy using radiochromic gel dosimeters. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 619(1), 163-166.
[38] Wolodzko, J. G., Marsden, C., & Appleby, A. (1999). CCD imaging for optical tomography of gel radiation dosimeters. Medical physics, 26(11), 2508-2513.
[39] Gore, J. C., Ranade, M., Maryanski, M. J., & Schulz, R. J. (1996). Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner. Physics in medicine and biology, 41(12), 2695.
[40] Oldham, M. (2006, December). 3D dosimetry by optical-CT scanning. In Journal of Physics: Conference Series (Vol. 56, No. 1, p. 58). IOP Publishing.
[41] Tompsett, M. F., Amelio, G. F., Bertram Jr, W. J., Buckley, R. R., McNamara, W. J., Mikkelsen Jr, J. C., & Sealer, D. A. (1971). Charge-coupled imaging devices: Experimental results. Electron Devices, IEEE Transactions on, 18(11), 992-996.
[42] Nariyama, N. (2012). Macroscopic and microscopic X-ray dose mappings with CCD-based GafChromic film dosimeters. Applied Radiation and Isotopes, 70(7), 1214-1218.
[43] Janesick, J. R., Elliott, T., Collins, S., Blouke, M. M., & Freeman, J. (1987). Scientific charge-coupled devices. Optical Engineering, 26(8), 268692-268692.
[44] Wikipedia- http://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law
[45] http://en.wikipedia.org/wiki/Ultraviolet%E2%8093visible_spectroscopy
[46] Harris, D. C. (2007) Quantitative Chemical Analysis, 7th edition; W. H. Freeman and Company: New York; pp.381-382.
[47] Hedayat, A. S., Sloane, N. J. A., & Stufken, J. (1999). Orthogonal arrays: theory and applications. Springer.
[48] 李輝煌, Taguchi Methods: Principles and Practices of Quality Design
[49] Roy, R. K. (2001). Design of experiments using the Taguchi approach: 16 steps to product and process improvement. John Wiley & Sons.
[50] http://books.google.com.tw/books?id=6zq3c3FaCq8C&pg=PA244&lpg=PA
[51] Fernanda Cavalcante, Lucas de Oliveira, Marcos M Vasques and Adelaide de Almeida. (2009) Fe3+ diffusion coefficient in fricke xylenol gel through shielding half of a 6 MV photon beam field size. International Nuclear Atlantic Conference. ISBN: 978-85-99141-03-8

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top