|
1. 詹弘廷, 〈認識神經退化性疾病〉, 2005. 2. C.J. Hsieh, "Study on data quantization of VMAT2 imaging in PET for Parinson's disease and comparison to DAT imaging in SPECT", 2010, Chang Gung University: Taiwan. p. 1-82. 3. 曾岐元, 《最新病理學》. 4 ed2008: 匯華圖書出版股份有限公司. 4. 邱銘章, 〈失智症診斷治療的教戰守則〉. 2007. 5. L. Mosconi, W.H. Tsui, K. Herholz, et al., "Multicenter Standardized 18F-FDG PET Diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementia". Journal of Nuclear Medicine, 2008. 49: p. 390-398. 6. R.S. Desikan, H.J. Cabral, F. Settecase, et al., "Automated MRI measures predict progression to Alzheimer's disease". Neurobiology of aging, 2010. 31(8): p. 1364-1374. 7. C.R. Jack Jr, M.A. Bernstein, N.C. Fox, et al., "The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods". Journal of Magnetic Resonance Imaging, 2008. 27(4): p. 685-691. 8. M. Grossman, C. McMillan, P. Moore, et al., "What’s in a name: voxel‐based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration". Brain, 2004. 127(3): p. 628-649. 9. H. MATSUDA, "Neuroimaging of Alzheimer's disease". Advances in Neurological Sciences, 2005. 49(3): p. 423-435. 10. G. Rabinovici and W. Jagust, "Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo". Behavioural neurology, 2009. 21(1): p. 117-128. 11. I.T. Hsiao, C.C. Huang, C.J. Hsieh, et al., "Correlation of early-phase 18 F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies". European Journal of Nuclear Medicine and Molecular Imaging, 2012. 39: p. 613-620. 12. N. Kemppainen, S. Aalto, I. Wilson, et al., "PET amyloid ligand [11C] PIB uptake is increased in mild cognitive impairment". Neurology, 2007. 68(19): p. 1603-1606. 13. K.J. Lin, W.C. Hsu, I.T. Hsiao, et al., "Whole-body biodistribution and brain PET imaging with [18F] AV-45, a novel amyloid imaging agent-a pilot study". Nuclear medicine and biology, 2010. 37(4): p. 497-508. 14. R.A. Koeppe, S. Gilman, A. Joshi, et al., "11C-DTBZ and 18F-FDG PET measures in differentiating dementias". Journal of Nuclear Medicine, 2005. 46: p. 936-944. 15. S.M. Landau, D. Harvey, C.M. Madison, et al., "Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI". Neurobiology of aging, 2011. 32(7): p. 1207-1218. 16. K. Herholz, D. Perani, E. Salmon, et al., "Comparability of FDG PET studies in probable Alzheimer's disease". Journal of Nuclear Medicine, 1993. 34(9): p. 1460. 17. A.B. Newberg, S.E. Arnold, N. Wintering, B.W. Rovner and A. Alavi, "Initial Clinical Comparison of 18F-Florbetapir and 18F-FDG PET in Patients with Alzheimer Disease and Controls". Journal of Nuclear Medicine, 2012. 53(6): p. 902-907. 18. K. Herholz, H. Schopphoff, M. Schmidt, et al., "Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease". Journal of Nuclear Medicine, 2002. 43(1): p. 21-26. 19. Y. Li, J.O. Rinne, L. Mosconi, et al., "Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease". European Journal of Nuclear Medicine and Molecular Imaging, 2008. 35(2). 20. S. Fahn, D. Oakes, I. Shoulson, et al., "Levodopa and the progression of Parkinson's disease". The New England journal of medicine, 2004. 351(24): p. 2498. 21. P. Morrish, G. Sawle and D. Brooks, "An [18F] dopa–PET and clinical study of the rate of progression in Parkinson’s disease". Brain, 1996. 119(2): p. 585-591. 22. A. Rojo, M. Aguilar, M. Garolera, E. Cubo, I. Navas and S. Quintana, "Depression in Parkinson's disease: clinical correlates and outcome". Parkinsonism &; related disorders, 2003. 10(1): p. 23-28. 23. M. Jahanshahi, H. Jenkins, R.G. Brown, C.D. Marsden, R.E. Passingham and D.J. Brooks, "Self-intiated versus externally triggered movements I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkison's disease subjects". Brain, 1995. 118: p. 913-933. 24. A. Antonini, K.L. Leenders, P. Vontobel, et al., "Complementary PET studies of striatal neuronal function in differential diagnosis between multiple system atrophy and Parkinson's disease". Brain, 1997. 120: p. 2187-2195. 25. M. Otsuka, Y. Kuwabara, Y. Ichiya, et al., "Differentiating between multiple system atrophy and Parkinson’s disease by positron emission tomography with 18 F-dopa and 18 F-FDG". Annals of nuclear medicine, 1997. 11(3): p. 251-257. 26. Y. Geng, G.-h. Shi, Y. Jiang, L.-x. Xu, X.-y. Hu and Y.-q. Shao, "Investigating the role of99mTc-TRODAT-1 SPECT imaging in idiopathic Parkinson’s disease". Journal of Zhejiang University Science, 2005. 6B(1): p. 22-27. 27. W.J. Hwang, W.J. Yao, S.P. Wey and G. Ting, "Reproducibility of 99mTc-TRODAT-1 SPECT measurement of dopamine transporters in Parkinson's disease". Journal of Nuclear Medicine, 2004. 45: p. 207-213. 28. K. Harrington, S. Augood, A. Kingsbury, O. Foster and P. Emson, "Dopamine transporter (DAT) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson's disease". Molecular brain research, 1996. 36(1): p. 157-162. 29. L. Tossici-Bolt, J.C. Dickson, T. Sera, et al., "Calibration of gamma camera systems for a multicentre European 123 I-FP-CIT SPECT normal database". European Journal of Nuclear Medicine and Molecular Imaging, 2011. 38: p. 1529-1540. 30. P.T. Meyer, B. Sattler, T. Lincke, A. Seese and O. Sabri, "Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems". Journal of Nuclear Medicine, 2003. 44(5): p. 839-845. 31. W.S. Huang, Y.H. Chiang, J.C. Lin, Y.H. Chou, C.Y. Cheng and R.S. Liu, "Crossover study of 99mTc-TRODAT-1 SPECT and 18F-FDOPA PET in Parkinson’s disease patients". Journal of Nuclear Medicine, 2003. 44(7): p. 999-1005. 32. M.K. Chen, H. Kuwabara, Y. Zhou, et al., "VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease". Journal of neurochemistry, 2008. 105(1): p. 78-90. 33. N. Okamura, V.L. Villemagne, J. Drago, et al., "In Vivo Measurement of Vesicular Monoamine Transporter Type 2 Density in Parkinson Disease with 18F-AV-133". Journal of Nuclear Medicine, 2010. 51(2): p. 223-228. 34. K.J. Lin, Y.H. Weng, S.P. Wey, et al., "Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent". Journal of Nuclear Medicine, 2010. 51(9): p. 1480-1485. 35. T. Siessmeier, Y. Zhou, H.G. Buchholz, et al., "Parametric mapping of binding in human brain of D2 receptor ligands of different affinities". Journal of Nuclear Medicine, 2005. 46(6): p. 964-972. 36. H.F. Kung, S. Pan, M.P. Kung, et al., "In vitro and in vivo evaluation of [123I] IBZM: a potential CNS D-2 dopamine receptor imaging agent". Journal of Nuclear Medicine, 1989. 30(1): p. 88. 37. G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price and E.M. Stadlan, "Clinical diagnosis of Alzheimer's disease". Neurology, 1984. 34(7): p. 939-939. 38. C. Scherfler, K. Seppi, E. Donnemiller, et al., "Voxel-wise analysis of [123I] β-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson's disease". Brain, 2005. 128(7): p. 1605-1612. 39. D. Brooks, V. Ibanez, G. Sawle, et al., "Differing patterns of striatal 18F‐dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy". Annals of neurology, 1990. 28(4): p. 547-555. 40. A. Kühn, P. Grosse, K. Holtz, P. Brown, B.U. Meyer and A. Kupsch, "Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes". Clinical neurophysiology, 2004. 115(8): p. 1786-1795. 41. D.J. Gelb, E. Oliver and S. Gilman, "Diagnostic criteria for Parkinson disease". Archives of neurology, 1999. 56(1): p. 33. 42. S. Fahn, "Description of Parkinson's disease as a clinical syndrome". Annals of the New York Academy of Sciences, 2003. 991(1): p. 1-14. 43. M.W. Weiner, P.S. Aisen, C.R. Jack, et al., "The Alzheimer's disease neuroimaging initiative: progress report and future plans". Alzheimer's &; Dementia, 2010. 6(3): p. 202-211. 44. A.E. Lang, "Clinical trials of disease-modifying therapies for neurodegenerative diseases: the challenges and the future". Nature medicine, 2010. 16(11): p. 1223-1226. 45. W.J. Jagus, D. Bandy, K. Chen, et al., "The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core". Alzheimer's &; Dementia, 2010. 6: p. 221-229. 46. M.W. Weiner, D.P. Veitch, P.S. Aisen, et al., "The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception". Alzheimer's &; Dementia, 2011. 8: p. S1-68. 47. J. Seibyl, K. Marek and I.G. Zubal, "The Role of the Core Imaging Laboratory in Multicenter Trials". Seminars in Nuclear Medicine, 2010. 40(5): p. 338-346. 48. A. Joshi, R.A. Koeppe and J.A. Fessler, "Reducing between scanner differences in multi-center PET studies". NeuroImage, 2009. 46(1): p. 154-159. 49. S. Minoshima, R.A. Koeppe, A. Frey, M. Ishihara and D.E. Kuhl, "Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images". Journal of Nuclear Medicine, 1994. 35(6): p. 949-954. 50. C. Proverb, "A probabilistic atlas of the human brain: theory and rationale for its development". NeuroImage, 1995. 2: p. 89-101. 51. S. Minoshima, R.A. Koeppe, K.A. Frey and D.E. Kuhl, "Anatomic standardization: linear scaling and nonlinear warping of functional brain images". Journal of Nuclear Medicine, 1994. 35(9): p. 1528. 52. C. Crespo, J. Gallego, A. Cot, et al., "Quantification of dopaminergic neurotransmission SPECT studies with I-123-lablled radioligands. A comparison between different imaging systems and data acquiaition protocols using Monte Carlo simulation". European Journal of Nuclear Medicine and Molecular Imaging, 2008. 35: p. 1334-1342. 53. J.J. Zaknun, H. Schucktanz and F. Aichner, "Impact of instrumentation on DaTSCAN imaging: how feasible is the concept of cross-systems correction factor.". The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2007. 51(2): p. 194-203. 54. W. Koch, P.E. Radau, W. Münzing and K. Tatsch, "Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom". European Journal of Nuclear Medicine and Molecular Imaging, 2006. 33(4): p. 495-502. 55. P. Calvini, G. Rodriguez, F. Inguglia, A. Mignone, U.P. Guerra and F. Nobili, "The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation". European Journal of Nuclear Medicine and Molecular Imaging, 2007. 34(8): p. 1240-1253. 56. J.C. Dickson, L. Tossici-Bolt, T. Sera, et al., "The impact of reconstruction method on the quantification of DaTSCAN images". European Journal of Nuclear Medicine and Molecular Imaging, 2009. 37(1): p. 23-35. 57. R. Boellaard, "Standards for PET image acquisition and quantitative data analysis". Journal of Nuclear Medicine, 2009. 50(Suppl 1): p. 11S-20S. 58. M. Westerterp, J. Pruim, W. Oyen, et al., "Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters". European Journal of Nuclear Medicine and Molecular Imaging, 2007. 34(3): p. 392-404. 59. R. Boellaard, W.J.G. Oyen, C.J. Hoekstra, et al., "The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials". European Journal of Nuclear Medicine and Molecular Imaging, 2008. 35(12): p. 2320-2333. 60. R. Boellaard, N.C. Krak, O.S. Hoekstra and A.A. Lammertsma, "Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study". Journal of Nuclear Medicine, 2004. 45(9): p. 1519-1527. 61. L. Geworski, B.O. Knoop, M.d. Wit, V. Ivancˇevic´, R. Bares and D.L. Munz, "Multicenter Comparison of Calibration and Cross Calbration ofPET Scanners". Journal of Nuclear Medicine, 2002. 43: p. 635-639. 62. R.C. Gonzalez and R.E. Woods, "Digital Image Processing"2008. 63. S. Baoci, Y. Xiuli, M. Yunchuan, et al., "The Multi-center Study on Alzheimer's Disease Using FDG PET". IEEE/ICME International Conference on Complex Medical Engineering, 2007: p. 930-937. 64. E.J. Hoffman, P.D. Cutler, W.M. Digby and J.C. Mazziotta, "3-D phantom to simulate cerebral blood flow and metabolic for PET". IEEE Transactions on Nuclear Science, 1990. 37(2): p. 616-620. 65. V.L. Villemagne, K. Ong, R.S. Mulligan, et al., "Amyloid imaging with 18F-florbetaben in Alzheimer disease and other dementias". Journal of Nuclear Medicine, 2011. 52(8): p. 1210-1217. 66. V. Sossi, T. Oakes and T. Ruth, "A phantom study evaluating the quantitative aspect of 3D PET imaging of the brain". Physics in medicine and biology, 1998. 43: p. 2615-2630. 67. J.C. Mazziotta, M.E. Phelps, D. Plummer and D.E. Kuhl, "Quantitation in positron emission computed tomography: 5. Physical- Anatomical Effects". Journal of Computer Assisted Tomography, 1981. 5: p. 734-743. 68. J.S. Scheuermann, J.R. Saffer, J.S. Karp, A.M. Levering and B.A. Siegel, "Qualification of PET scanners for use in multicenter cancer clinical trials: the American College of Radiology Imaging Network experience". Journal of Nuclear Medicine, 2009. 50(7): p. 1187-1193. 69. M.R. Ay and H. Zaidi, "Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET". European Journal of Nuclear Medicine and Molecular Imaging, 2006. 33(11): p. 1301-1313. 70. S.T. Yang, "Partial volume correction in positron emission tomography", 2011, National Tsing Hua University: Taiwan. p. 1-171. 71. M. Tuceryan and A.K. Jain, "Texture analysis". 2 ed. Handbook of pattern recognition and computer vision. Vol. 276. 1998: World Scientific Publishing Co. 72. M.H. Bharati, J.J. Liu and J.F. MacGregor, "Image texture analysis: methods and comparisons". Chemometrics and intelligent laboratory systems, 2004. 72(1): p. 57-71. 73. R.M. Haralick, K. Shanmugam and I.H. Dinstein, "Textural features for image classification". IEEE Transactions on Nuclear Science, 1973. 3(6): p. 610-621. 74. M. Partio, B. Cramariuc, M. Gabbouj and A. Visa, "Rock texture retrieval using gray level co-occurrence matrix", 2002: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.1056&;rep=rep1&;type=pdf. 75. F. Tixier, C.C. Le Rest, M. Hatt, et al., "Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer". Journal of Nuclear Medicine, 2011. 52(3): p. 369-378. 76. "Nuclear Medicine Phantom", 2005, Fluke Biomedical: USA. 77. O.G. Rousset, Y. Ma and A.C. Evans, "Correction for partial volume effects in PET: principle and validation". Journal of Nuclear Medicine, 1998. 39(5): p. 904. 78. F.H. Fahey, P.E. Kinahan, R.K. Doot, M. Kocak, H. Thurston and T.Y. Poussaint, "Variability in PET quantitation within a multicenter consortium". Medical Physics, 2010. 37(7): p. 3660-3666. 79. P. Kinahan, R. Doot, P. Christian, et al., "Multi-center comparison of a PET/CT calibration phantom for imaging trials". Journal of Nuclear Medicine, 2008. 49(Supplement 1): p. 63. 80. B.A. Thomas, K. Erlandsson, M. Modat, et al., "The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease". European Journal of Nuclear Medicine and Molecular Imaging, 2011. 38(6): p. 1104-1119. 81. E.J. Hoffman, S.C. Huang and M.E. Phelps, "Quantitation in positron emission computed tomography: 1. Effect of object size". Journal of Computer Assisted Tomography, 1979. 3(3): p. 299. 82. L. Geworski, B.O. Knoop, M.L. de Cabrejas, W.H. Knapp and D.L. Munz, "Recovery correction for quantitation in emission tomography: a feasibility study". European Journal of Nuclear Medicine and Molecular Imaging, 2000. 27(2): p. 161-169. 83. L. Åkesson, "Partial volume correction in PET/CT", in Department of Nuclear Medicine2008, Stockholm University: Solna. p. 1-43. 84. 余勁毅 and 吳瑞美, 〈進行性核上眼神經麻痺症診斷上的困難〉, 2003, 台灣神經學學會動作障礙組: http://www.neuro.org.tw/movement/news/view.asp?n_no=28&;page=3. 85. D.R. Williams and A.J. Lees, "Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges". The Lancet Neurology, 2009. 8(3): p. 270-279. 86. M. Savoiardo, F. Girotti, L. Strada and E. Ciceri, "Magnetic resonance imaging in progressive supranuclear palsy and other parkinsonian disorders". Journal of Neural Transmission-Supplements only, 1994(42): p. 93-110. 87. M. Shidahara, C. Tsoumpas, C.J. McGinnity, et al., "Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data". Physics in medicine and biology, 2012. 57: p. 3107–3122.
|