跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許雅晴
研究生(外文):Ya Cing Hsu
論文名稱:多中心臨床試驗之正子影像品質控制
論文名稱(外文):The quality control of PET imaging in multicenter clinical trial
指導教授:蕭穎聰
指導教授(外文):I. T. Hsiao
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學影像暨放射科學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:121
中文關鍵詞:阿茲海默症帕金森氏症多中心臨床試驗假體降低影像差異數據轉換PET
外文關鍵詞:Alzheimer's diseaseParkinson's diseasemulticenter clinical trialphantomvariation reducingdata conversionPET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
18F-AV-45及18F-AV-133是最新發展的核醫藥物,分別可以評估阿茲海默症患者的類澱粉蛋白酶沉積,與帕金森氏症患者的VMAT2多巴胺神經元退化情形。為了觀察疾病進程及臨床診斷需求,藉由多中心臨床試驗收集的大量數據資料及功能性影像等資料,廣泛探討不同區域及群體範圍的變動性。為了使多中心試驗中不同PET影像系統所提供的影像資料能夠互相比較及互換,系統間的校正及資料轉換是很重要的研究課題。本論文主要是評估多中心臨床試驗研究中的影像品質,建立品質控制的評估參數。接著,利用3D Hoffman假體進行高頻修正與部份體積效應修正,取得各PET系統的高斯平滑曲線參數,以降低影像間的差異;另外也利用紋狀體假體推導出數據轉換方程,以進行PET影像的數據轉換。
結果發現,所有影像皆通過實驗中所設立的影像品質評估參數。利用高斯平滑曲線推導出的平滑化校正在兩個假體實驗的應用中皆可以降低影像的差異,讓資料可以互相比較。在紋狀體假體實驗所得出的一般性轉換方程可以應用在假體測試與退化不嚴重的臨床資料,但對於退化嚴重的區域,必須要重新定義特殊的轉換參數及VOI才能夠使影像量化資料達到有效互換。
從結果中可以歸納出,透過系統解析度校正可以降低影像的差異,使之可以在同一標準下互相比較;利用相關擬人化假體推導出的轉換參數與功能性VOI的考慮,可以有效應用於臨床上影像的量化資料轉換。
18F-AV-45 and 18F-AV-133 are novel PET tracers for imaging the deposition of amyloid in Alzheimer’s disease and the VMAT2 in dopaminergic neuron degeneration of Parkinson’s disease, respectively. For the purpose of observing the disease progression and the need in clinical diagnosis, we can widely investigate the variation between the control and diseased groups by collecting the data from the multicenter clinical trials. To establish the index of quality control assessment to evaluate the image quality in multicenter clinical trials was the first goal in this thesis. Then, in order to achieve comparability and interchangeability of information from different scanning systems, correcting the variation among images and data conversion from different scanners are the second focus in this thesis. Here, to correct the variation and reduce the variability between images, studies were performed using Hoffman phantom by first evaluating the resolution kernel for each system, and then applying smoothing filters to reduce high-frequency variability. In addition, study using the striatal phantom was used to derive the transformation factor for data conversion in PET images, and using another phantom data to validate the performance of the data conversion.
The results demonstrated that all images passed the criteria of quality control assessment. The derived FWHM kernels in high-frequency correction can reduce the variability and increase the comparability between scanners. With the application of the transformation factor, a minor percentage difference between scanners is shown in the retest phantom data. To evaluate its capability, the factor is also applied to the clinical data, and the result shows consistency with those in the phantom study. But for the severely declined area, a specific transformation factor should be used.
In conclusion, by applying the FWHM kernels in high frequency correction can reduce the variation between scanners, and make images comparable. Also, the derived transformation factor can be applied for data conversion between scanners.
目錄
論文指導教授推薦書
論文口試委員審定書
國家圖書館授權書 iii
長庚大學博碩士紙本論文著作授權書 iv
誌謝 v
中文摘要 vi
Abstract viii
目錄 x
表目錄 xiii
圖目錄 xv
第一章 前言 1
1-1功能性影像在神經退化性疾病的應用 1
1-2神經退化性疾病之多中心臨床試驗 4
1-3多中心臨床試驗之影像差異 8
1-4研究目的 10
第二章 多中心臨床試驗之影像品質控制及校正 11
2-1解剖性影像校正 11
2-2功能性核醫影像校正 13
2-2-1 SPECT 之多中心臨床試驗影像校正 13
2-2-2 PET 之多中心臨床試驗影像校正 18
第三章 研究材料與方法 24
3-1Hoffman 假體實驗 .24
3-1-1 Hoffman 假體 24
3-1-2 假體造影流程 25
3-1-3 影像分析 28
3-1-4 影像品質評估 30
3-2紋狀體假體實驗 43
3-2-1 紋狀體假體 43
3-2-2 紋狀體假體造影流程 45
3-2-3 影像分析 48
3-3臨床受試者造影 49
3-3-1 受試者與來源 49
3-3-2 造影流程 50
3-3-3 影像分析 50
第四章 研究結果 53
4-1Hoffman 假體實驗 53
4-1-1 正子造影系統在影像之表現 53
4-1-2 影像高頻修正與部份體積效應修正 54
4-1-3 紋理分析之應用 59
4-2紋狀體假體實驗 64
4-2-1 轉換參數及測試結果 64
4-2-2 轉換參數之臨床應用及限制 66
4-2-3 外核區域的高百分比差異校正 68
第五章 討論與結論 76
5-1系統間影像品質的比較:影像解析度之影響 78
5-1-1 影像高頻修正與影像品質 78
5-1-2 影像高頻增強修正與影像品質 81
5-2系統間分析結果的互換:數據轉換 84
5-3結論 87
5-4未來展望 89
參考文獻 91

表目錄
表 3 -1 分別將各組造影系統以(1) ~ (6)分別編號,詳列了各正子造影系統的造影條件與參數 27
表 3 -2 Hoffman 影像之 VOI 定義,並為各 VOI 標號 29
表 3 -3 配置相關濃度所需要的放射性藥物活度 46
表 3 -4 左右邊紋狀體注入的藥物濃度及墨水顏色 46
表 3 -5 GE 和 SE PET/CT 掃描參數 47
表 3 -6 受測者之臨床表徵 49
表 4 -1 各正子造影系統的影像評估標準結果 54
表 4 -2 高頻修正之下,為使各造影系統達到和標準影像相同影像解析度所需要的高斯平滑曲線程度 (FWHM:i mm) 55
表 4 -3 校正部份體積效應,使影像能夠達到 Centrum/aGM=25% (Hoffman 假體最初所設計的 GM 與 WM 比值) 所需要的de-convolution kernel 大小(mm) 56
表 4 -4 紋理分析結果─像素對比度:校正前後之紋理特性百分比差異 63
表 4 -5 紋理分析結果─像素同質性:校正前後之紋理特性百分比差異 63
表 4 -6 測試轉換參數之參考影像,其影像之原始 SBR 值、 利用轉換參數將 GE 轉換至 SE 的 SBR、GE 轉換後和 SE 原始值之百分比差異 66
表 4 -7 轉換參數之臨床應用結果。SUVRm為臨床初始量化值;%diff為 GE 系統上,經過轉換後的 SUVRm和 SE 系統的 SUVRm之百分比差異 67
表 4 -8 外核轉換參數所應用的 VOI:Original 表示目前臨床分析所應用的 VOI 大小;Modified 表依據受測者影像所修改的 VOI. 68
表 4 -9 分別利用一般的轉換參數及特殊的轉換參數與不同 VOI在臨床影像上所求得的轉換前後之 SUVR 百分比差異 (負值表示 GE系統轉換後的值較 SE 系統高) 71
表 4 -10 在不同程度高斯平滑曲線的應用下,經過畫素強度校正,GE和 SE 系統間在 VOI 計算中的 SBR 73
表 4-11 在不同程度高斯平滑曲線的應用下,GE 和 SE 系統間在 VOI計算中的百分比差異 74
表 4 -12 臨床資料經過高頻校正的百分比差異結果。%diff(smoothed)為經過smooth後的影像之間的SUVR百分比差異;%diff(SUVRm)為初始測量到的系統間之 SUVR 百分比差異 75
圖目錄
圖 2 -1 減少邊緣溢出效應:紅色區域以測量到的紋狀體值為主,綠色區域以量化到的背景值為輔。 16
圖 3 -1 Hoffman 假體示意圖 25
圖 3 -2 Hoffman 假體實驗流程 (材料準備、假體灌注、造影流程) 26
圖 3 -3 Hoffman 影像之 VOI 區域定義 29
圖 3 -4 計算衰減分率於尚未經過空間校正的影像 (A)中心丘腦之VOI 示意 (B)邊緣 VOI 示意 32
圖 3 -5 產生 GLCM 的灰階轉換方法 39
圖 3 -6 GLCM 計算中,不同的鄰近方向 40
圖 3 -7 藍色區域為外核(putamen),紅色區域為尾核(caudate);其他的空間則為剩餘的大腦區域 44
圖 3 -8 紋狀體假體隻造影流程 (材料準備、假體灌注、正子造影) 47
圖 3 -9 本研究所使用的 4 個 VOI 與參考區域;(A)CT 影像 (B)SE 正子影像 (C)GE 正子影像 48
圖 3 -10 本研究所使用的 6 個 VOI 與參考組織(視覺皮質區),於其中一位受測者的 MRI 影像及 18F-AV-133 影像上示意圖 51
圖 4 -1 以global max當作畫素強度校正標準的初始與校正影像 (A)為各系統原始的影像 (B)為經過部份體積效應修正的影像 (C)為經過高頻修正後的影像 56
圖 4 -2 以最小平方差觀察經過高頻修正前後之影像和標準參考影像( R ) 的差異 (粉紅色圓型標示為經過高頻修正後的影像而藍色菱形標示為原始影像) 57
圖 4 -3 以均方根誤差 (%RMSE) 觀察各系統間校正前後的影像差異:(A) 為高頻修正前後各系統間的差異;(B)為部份體積效應修正前後各系統間的差異(橘色三角形標示為經過部份體積效應修正後的影像、粉紅色圓型標示為經過高頻修正後的影像而藍色菱形標示為原始影像) 58
圖 4 -4 紋理分析結果─像素對比度:VOI 在校正前後之紋理特性差異 61
圖 4 -5 紋理分析結果─像素同質性:VOI 校正前後之紋理特性差異 62
圖 4 -6 測試轉換參數準確性的參考影像 65
圖 4 -7 GE 和 SE 之間的轉換方程。x 軸為在 GE 影像上所肏量到的SBR、y 軸為在 SE 影像上所測量到的 SBR 值。 65
圖 4 -8 經由轉換參數應用的 18F-AV-133 臨床影像 (A)GE 原始影像(B)SE 原始影像 (C)經過轉換後的 GE 影像 67
圖 4 -9 針對低濃度 SBR 所定義出的特殊轉換參數 (specific transformation factor) 71
圖 4 -10 紋狀假體經過不同 FWHM kernel 後的高頻修正影像 (A)GE原始影像 (B)SE 原始影像 (C)以 FWHM 8mm 經過平滑化的 SE影像 (D) 以 FWHM 10.3mm 經過平滑化的 SE 影像 74
圖 4 -11 臨床受測者經過高頻修正後的影像示意圖 (A)GE 原始影像(B)SE 原始影像 (C)經過 smooth 後的 SE 影像 75
1. 詹弘廷, 〈認識神經退化性疾病〉, 2005.
2. C.J. Hsieh, "Study on data quantization of VMAT2 imaging in PET for Parinson's disease and comparison to DAT imaging in SPECT", 2010, Chang Gung University: Taiwan. p. 1-82.
3. 曾岐元, 《最新病理學》. 4 ed2008: 匯華圖書出版股份有限公司.
4. 邱銘章, 〈失智症診斷治療的教戰守則〉. 2007.
5. L. Mosconi, W.H. Tsui, K. Herholz, et al., "Multicenter Standardized 18F-FDG PET Diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementia". Journal of Nuclear Medicine, 2008. 49: p. 390-398.
6. R.S. Desikan, H.J. Cabral, F. Settecase, et al., "Automated MRI measures predict progression to Alzheimer's disease". Neurobiology of aging, 2010. 31(8): p. 1364-1374.
7. C.R. Jack Jr, M.A. Bernstein, N.C. Fox, et al., "The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods". Journal of Magnetic Resonance Imaging, 2008. 27(4): p. 685-691.
8. M. Grossman, C. McMillan, P. Moore, et al., "What’s in a name: voxel‐based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration". Brain, 2004. 127(3): p. 628-649.
9. H. MATSUDA, "Neuroimaging of Alzheimer's disease". Advances in Neurological Sciences, 2005. 49(3): p. 423-435.
10. G. Rabinovici and W. Jagust, "Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo". Behavioural neurology, 2009. 21(1): p. 117-128.
11. I.T. Hsiao, C.C. Huang, C.J. Hsieh, et al., "Correlation of early-phase 18 F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies". European Journal of Nuclear Medicine and Molecular Imaging, 2012. 39: p. 613-620.
12. N. Kemppainen, S. Aalto, I. Wilson, et al., "PET amyloid ligand [11C] PIB uptake is increased in mild cognitive impairment". Neurology, 2007. 68(19): p. 1603-1606.
13. K.J. Lin, W.C. Hsu, I.T. Hsiao, et al., "Whole-body biodistribution and brain PET imaging with [18F] AV-45, a novel amyloid imaging agent-a pilot study". Nuclear medicine and biology, 2010. 37(4): p. 497-508.
14. R.A. Koeppe, S. Gilman, A. Joshi, et al., "11C-DTBZ and 18F-FDG PET measures in differentiating dementias". Journal of Nuclear Medicine, 2005. 46: p. 936-944.
15. S.M. Landau, D. Harvey, C.M. Madison, et al., "Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI". Neurobiology of aging, 2011. 32(7): p. 1207-1218.
16. K. Herholz, D. Perani, E. Salmon, et al., "Comparability of FDG PET studies in probable Alzheimer's disease". Journal of Nuclear Medicine, 1993. 34(9): p. 1460.
17. A.B. Newberg, S.E. Arnold, N. Wintering, B.W. Rovner and A. Alavi, "Initial Clinical Comparison of 18F-Florbetapir and 18F-FDG PET in Patients with Alzheimer Disease and Controls". Journal of Nuclear Medicine, 2012. 53(6): p. 902-907.
18. K. Herholz, H. Schopphoff, M. Schmidt, et al., "Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease". Journal of Nuclear Medicine, 2002. 43(1): p. 21-26.
19. Y. Li, J.O. Rinne, L. Mosconi, et al., "Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease". European Journal of Nuclear Medicine and Molecular Imaging, 2008. 35(2).
20. S. Fahn, D. Oakes, I. Shoulson, et al., "Levodopa and the progression of Parkinson's disease". The New England journal of medicine, 2004. 351(24): p. 2498.
21. P. Morrish, G. Sawle and D. Brooks, "An [18F] dopa–PET and clinical study of the rate of progression in Parkinson’s disease". Brain, 1996. 119(2): p. 585-591.
22. A. Rojo, M. Aguilar, M. Garolera, E. Cubo, I. Navas and S. Quintana, "Depression in Parkinson's disease: clinical correlates and outcome". Parkinsonism &; related disorders, 2003. 10(1): p. 23-28.
23. M. Jahanshahi, H. Jenkins, R.G. Brown, C.D. Marsden, R.E. Passingham and D.J. Brooks, "Self-intiated versus externally triggered movements I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkison's disease subjects". Brain, 1995. 118: p. 913-933.
24. A. Antonini, K.L. Leenders, P. Vontobel, et al., "Complementary PET studies of striatal neuronal function in differential diagnosis between multiple system atrophy and Parkinson's disease". Brain, 1997. 120: p. 2187-2195.
25. M. Otsuka, Y. Kuwabara, Y. Ichiya, et al., "Differentiating between multiple system atrophy and Parkinson’s disease by positron emission tomography with 18 F-dopa and 18 F-FDG". Annals of nuclear medicine, 1997. 11(3): p. 251-257.
26. Y. Geng, G.-h. Shi, Y. Jiang, L.-x. Xu, X.-y. Hu and Y.-q. Shao, "Investigating the role of99mTc-TRODAT-1 SPECT imaging in idiopathic Parkinson’s disease". Journal of Zhejiang University Science, 2005. 6B(1): p. 22-27.
27. W.J. Hwang, W.J. Yao, S.P. Wey and G. Ting, "Reproducibility of 99mTc-TRODAT-1 SPECT measurement of dopamine transporters in Parkinson's disease". Journal of Nuclear Medicine, 2004. 45: p. 207-213.
28. K. Harrington, S. Augood, A. Kingsbury, O. Foster and P. Emson, "Dopamine transporter (DAT) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson's disease". Molecular brain research, 1996. 36(1): p. 157-162.
29. L. Tossici-Bolt, J.C. Dickson, T. Sera, et al., "Calibration of gamma camera systems for a multicentre European 123 I-FP-CIT SPECT normal database". European Journal of Nuclear Medicine and Molecular Imaging, 2011. 38: p. 1529-1540.
30. P.T. Meyer, B. Sattler, T. Lincke, A. Seese and O. Sabri, "Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems". Journal of Nuclear Medicine, 2003. 44(5): p. 839-845.
31. W.S. Huang, Y.H. Chiang, J.C. Lin, Y.H. Chou, C.Y. Cheng and R.S. Liu, "Crossover study of 99mTc-TRODAT-1 SPECT and 18F-FDOPA PET in Parkinson’s disease patients". Journal of Nuclear Medicine, 2003. 44(7): p. 999-1005.
32. M.K. Chen, H. Kuwabara, Y. Zhou, et al., "VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease". Journal of neurochemistry, 2008. 105(1): p. 78-90.
33. N. Okamura, V.L. Villemagne, J. Drago, et al., "In Vivo Measurement of Vesicular Monoamine Transporter Type 2 Density in Parkinson Disease with 18F-AV-133". Journal of Nuclear Medicine, 2010. 51(2): p. 223-228.
34. K.J. Lin, Y.H. Weng, S.P. Wey, et al., "Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent". Journal of Nuclear Medicine, 2010. 51(9): p. 1480-1485.
35. T. Siessmeier, Y. Zhou, H.G. Buchholz, et al., "Parametric mapping of binding in human brain of D2 receptor ligands of different affinities". Journal of Nuclear Medicine, 2005. 46(6): p. 964-972.
36. H.F. Kung, S. Pan, M.P. Kung, et al., "In vitro and in vivo evaluation of [123I] IBZM: a potential CNS D-2 dopamine receptor imaging agent". Journal of Nuclear Medicine, 1989. 30(1): p. 88.
37. G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price and E.M. Stadlan, "Clinical diagnosis of Alzheimer's disease". Neurology, 1984. 34(7): p. 939-939.
38. C. Scherfler, K. Seppi, E. Donnemiller, et al., "Voxel-wise analysis of [123I] β-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson's disease". Brain, 2005. 128(7): p. 1605-1612.
39. D. Brooks, V. Ibanez, G. Sawle, et al., "Differing patterns of striatal 18F‐dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy". Annals of neurology, 1990. 28(4): p. 547-555.
40. A. Kühn, P. Grosse, K. Holtz, P. Brown, B.U. Meyer and A. Kupsch, "Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes". Clinical neurophysiology, 2004. 115(8): p. 1786-1795.
41. D.J. Gelb, E. Oliver and S. Gilman, "Diagnostic criteria for Parkinson disease". Archives of neurology, 1999. 56(1): p. 33.
42. S. Fahn, "Description of Parkinson's disease as a clinical syndrome". Annals of the New York Academy of Sciences, 2003. 991(1): p. 1-14.
43. M.W. Weiner, P.S. Aisen, C.R. Jack, et al., "The Alzheimer's disease neuroimaging initiative: progress report and future plans". Alzheimer's &; Dementia, 2010. 6(3): p. 202-211.
44. A.E. Lang, "Clinical trials of disease-modifying therapies for neurodegenerative diseases: the challenges and the future". Nature medicine, 2010. 16(11): p. 1223-1226.
45. W.J. Jagus, D. Bandy, K. Chen, et al., "The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core". Alzheimer's &; Dementia, 2010. 6: p. 221-229.
46. M.W. Weiner, D.P. Veitch, P.S. Aisen, et al., "The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception". Alzheimer's &; Dementia, 2011. 8: p. S1-68.
47. J. Seibyl, K. Marek and I.G. Zubal, "The Role of the Core Imaging Laboratory in Multicenter Trials". Seminars in Nuclear Medicine, 2010. 40(5): p. 338-346.
48. A. Joshi, R.A. Koeppe and J.A. Fessler, "Reducing between scanner differences in multi-center PET studies". NeuroImage, 2009. 46(1): p. 154-159.
49. S. Minoshima, R.A. Koeppe, A. Frey, M. Ishihara and D.E. Kuhl, "Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images". Journal of Nuclear Medicine, 1994. 35(6): p. 949-954.
50. C. Proverb, "A probabilistic atlas of the human brain: theory and rationale for its development". NeuroImage, 1995. 2: p. 89-101.
51. S. Minoshima, R.A. Koeppe, K.A. Frey and D.E. Kuhl, "Anatomic standardization: linear scaling and nonlinear warping of functional brain images". Journal of Nuclear Medicine, 1994. 35(9): p. 1528.
52. C. Crespo, J. Gallego, A. Cot, et al., "Quantification of dopaminergic neurotransmission SPECT studies with I-123-lablled radioligands. A comparison between different imaging systems and data acquiaition protocols using Monte Carlo simulation". European Journal of Nuclear Medicine and Molecular Imaging, 2008. 35: p. 1334-1342.
53. J.J. Zaknun, H. Schucktanz and F. Aichner, "Impact of instrumentation on DaTSCAN imaging: how feasible is the concept of cross-systems correction factor.". The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2007. 51(2): p. 194-203.
54. W. Koch, P.E. Radau, W. Münzing and K. Tatsch, "Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom". European Journal of Nuclear Medicine and Molecular Imaging, 2006. 33(4): p. 495-502.
55. P. Calvini, G. Rodriguez, F. Inguglia, A. Mignone, U.P. Guerra and F. Nobili, "The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation". European Journal of Nuclear Medicine and Molecular Imaging, 2007. 34(8): p. 1240-1253.
56. J.C. Dickson, L. Tossici-Bolt, T. Sera, et al., "The impact of reconstruction method on the quantification of DaTSCAN images". European Journal of Nuclear Medicine and Molecular Imaging, 2009. 37(1): p. 23-35.
57. R. Boellaard, "Standards for PET image acquisition and quantitative data analysis". Journal of Nuclear Medicine, 2009. 50(Suppl 1): p. 11S-20S.
58. M. Westerterp, J. Pruim, W. Oyen, et al., "Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters". European Journal of Nuclear Medicine and Molecular Imaging, 2007. 34(3): p. 392-404.
59. R. Boellaard, W.J.G. Oyen, C.J. Hoekstra, et al., "The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials". European Journal of Nuclear Medicine and Molecular Imaging, 2008. 35(12): p. 2320-2333.
60. R. Boellaard, N.C. Krak, O.S. Hoekstra and A.A. Lammertsma, "Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study". Journal of Nuclear Medicine, 2004. 45(9): p. 1519-1527.
61. L. Geworski, B.O. Knoop, M.d. Wit, V. Ivancˇevic´, R. Bares and D.L. Munz, "Multicenter Comparison of Calibration and Cross Calbration ofPET Scanners". Journal of Nuclear Medicine, 2002. 43: p. 635-639.
62. R.C. Gonzalez and R.E. Woods, "Digital Image Processing"2008.
63. S. Baoci, Y. Xiuli, M. Yunchuan, et al., "The Multi-center Study on Alzheimer's Disease Using FDG PET". IEEE/ICME International Conference on Complex Medical Engineering, 2007: p. 930-937.
64. E.J. Hoffman, P.D. Cutler, W.M. Digby and J.C. Mazziotta, "3-D phantom to simulate cerebral blood flow and metabolic for PET". IEEE Transactions on Nuclear Science, 1990. 37(2): p. 616-620.
65. V.L. Villemagne, K. Ong, R.S. Mulligan, et al., "Amyloid imaging with 18F-florbetaben in Alzheimer disease and other dementias". Journal of Nuclear Medicine, 2011. 52(8): p. 1210-1217.
66. V. Sossi, T. Oakes and T. Ruth, "A phantom study evaluating the quantitative aspect of 3D PET imaging of the brain". Physics in medicine and biology, 1998. 43: p. 2615-2630.
67. J.C. Mazziotta, M.E. Phelps, D. Plummer and D.E. Kuhl, "Quantitation in positron emission computed tomography: 5. Physical- Anatomical Effects". Journal of Computer Assisted Tomography, 1981. 5: p. 734-743.
68. J.S. Scheuermann, J.R. Saffer, J.S. Karp, A.M. Levering and B.A. Siegel, "Qualification of PET scanners for use in multicenter cancer clinical trials: the American College of Radiology Imaging Network experience". Journal of Nuclear Medicine, 2009. 50(7): p. 1187-1193.
69. M.R. Ay and H. Zaidi, "Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET". European Journal of Nuclear Medicine and Molecular Imaging, 2006. 33(11): p. 1301-1313.
70. S.T. Yang, "Partial volume correction in positron emission tomography", 2011, National Tsing Hua University: Taiwan. p. 1-171.
71. M. Tuceryan and A.K. Jain, "Texture analysis". 2 ed. Handbook of pattern recognition and computer vision. Vol. 276. 1998: World Scientific Publishing Co.
72. M.H. Bharati, J.J. Liu and J.F. MacGregor, "Image texture analysis: methods and comparisons". Chemometrics and intelligent laboratory systems, 2004. 72(1): p. 57-71.
73. R.M. Haralick, K. Shanmugam and I.H. Dinstein, "Textural features for image classification". IEEE Transactions on Nuclear Science, 1973. 3(6): p. 610-621.
74. M. Partio, B. Cramariuc, M. Gabbouj and A. Visa, "Rock texture retrieval using gray level co-occurrence matrix", 2002: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.1056&;rep=rep1&;type=pdf.
75. F. Tixier, C.C. Le Rest, M. Hatt, et al., "Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer". Journal of Nuclear Medicine, 2011. 52(3): p. 369-378.
76. "Nuclear Medicine Phantom", 2005, Fluke Biomedical: USA.
77. O.G. Rousset, Y. Ma and A.C. Evans, "Correction for partial volume effects in PET: principle and validation". Journal of Nuclear Medicine, 1998. 39(5): p. 904.
78. F.H. Fahey, P.E. Kinahan, R.K. Doot, M. Kocak, H. Thurston and T.Y. Poussaint, "Variability in PET quantitation within a multicenter consortium". Medical Physics, 2010. 37(7): p. 3660-3666.
79. P. Kinahan, R. Doot, P. Christian, et al., "Multi-center comparison of a PET/CT calibration phantom for imaging trials". Journal of Nuclear Medicine, 2008. 49(Supplement 1): p. 63.
80. B.A. Thomas, K. Erlandsson, M. Modat, et al., "The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease". European Journal of Nuclear Medicine and Molecular Imaging, 2011. 38(6): p. 1104-1119.
81. E.J. Hoffman, S.C. Huang and M.E. Phelps, "Quantitation in positron emission computed tomography: 1. Effect of object size". Journal of Computer Assisted Tomography, 1979. 3(3): p. 299.
82. L. Geworski, B.O. Knoop, M.L. de Cabrejas, W.H. Knapp and D.L. Munz, "Recovery correction for quantitation in emission tomography: a feasibility study". European Journal of Nuclear Medicine and Molecular Imaging, 2000. 27(2): p. 161-169.
83. L. Åkesson, "Partial volume correction in PET/CT", in Department of Nuclear Medicine2008, Stockholm University: Solna. p. 1-43.
84. 余勁毅 and 吳瑞美, 〈進行性核上眼神經麻痺症診斷上的困難〉, 2003, 台灣神經學學會動作障礙組: http://www.neuro.org.tw/movement/news/view.asp?n_no=28&;page=3.
85. D.R. Williams and A.J. Lees, "Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges". The Lancet Neurology, 2009. 8(3): p. 270-279.
86. M. Savoiardo, F. Girotti, L. Strada and E. Ciceri, "Magnetic resonance imaging in progressive supranuclear palsy and other parkinsonian disorders". Journal of Neural Transmission-Supplements only, 1994(42): p. 93-110.
87. M. Shidahara, C. Tsoumpas, C.J. McGinnity, et al., "Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data". Physics in medicine and biology, 2012. 57: p. 3107–3122.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊