|
[1] S. Ciraci and I. P. Batra, “Theory of The Quantum Size Effect in Simple Metals”,Phys. Rev. B 33 (1986) 4294-4297. [2] M. Rieth, “Nano-Engineering in Science and Technology:An Introduction to the World of Nano-Design”, 2003, World Scientific, Singapore. [3] G. Horneck, B. K. Christa, “Astrobiology: The Quest for the Conditions of Life, Part V Complexity and Life, Molecular Self-Assembly and the Origin of Life", 2001, Spriger press, 360-372. [4] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”, Science 295 (2002) 2418-2421. [5] A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle Arrays on Surfaces for Electronic, Optical and Sensoric Applications”, Chemphyschem 1(2000) 18-52. [6] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications”, Adv. Mater. 12 (2000) 693-713. [7] P. A. Kralchevsky and N. D. Denkov, “Capillary Forces and Structuring in Layers of Colloid Particles”, Curr. Opinion. Coll. Interf. Sci. 6(2001) 383-401. [8] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles”, Encyclopedia of Nanosci. and Nanotech. X (2003) 1–23. [9] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns”, Chem. Phys. Lett. 408 (2005) 241–246. [10] N. D. Denkov; O. D. Velev; P. A. Kralchevsky; I. B. Ivanov; H. Yoshimura; K.Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183-3190. [11] P. A. Kralchevsky; V. N. Paunov; I. B. Ivanov; K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid- Fluid Interface”, J. Colloid Interface Sci. 151 (1992) 79-94. [12] P. A. Kralchevsky; V. N. Paunov; N. D. Denkov; I. B. Ivanov; K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface” J. Colloid Interface Sci. 155 (1993) 420-437. [13] P. A. Kralchevsky; K. Nagayama, “Capillary Forces between Colloidal Particles”, Langmuir 10 (1994) 23-36. [14] K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid Films”, Colloids Surf. A 109 (1996) 363-374. [15] J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society 43 (1931) 461-482. [16] A. S. Dimitrov; K. Nagayama, "Steady-State Unidirectional Convective Assembling of Fine Particle into Two-Dimensional Arrays", Chem. Phys. Lett.243 (1995) 462-468. [17] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces“, Langmuir 12 (1996)1303-1311. [18] E. Adachi, A. S. Dimitrov, and K. Nagayama, “Stripe Patterns Formed on a Glass Surface During Droplet Evaporation”, Langmuir 11 (1995) 1057-1060. [19] H. W. Deckman, J. H. Dunsmuir, “Natural Lithography", Appl. Phys. Lett. 41 (1982) 377-379. [20] C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura and K. Nagayama, “Effect of Growth Conditions on the Structure of Two-Dimensional Latex Crystals: Experiment”, Colloid. Polym. Sci. 277 (1999) 914-930. [21] R. Micheletto, H. Fukuda and M. Ohtsu, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles", Langmuir 11 (1995) 3333-3336. [22] W. Kerm, “Handbook of Semiconductor Wafer Cleaning Technology –Science, Technology, and Application”, 1993, Noyes Publications, New Jersey. [23] V. Ng, Y. V. Lee, B. T. Chen and A. O. Adeyeye, “Nanostructure Array Fabrication with Temperature-Controlled Self-Assembly Techniques”, Nanotechnology 13 (2002) 554–558. [24] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett- Like Technique”, Langmuir 20 (2004) 10998-11004. [25] Y. Kobayashi, H. Miyauchi, “Fabrication of Mono- and Multi-Layers of Submicro-Sized Spheres by a Dip-Coating Technique and Their Transmittance Property”, J. Chem. Eng. of Japan 37 (2004) 614-621. [26] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles”, Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6. [27] J. C. Hulteen, R. P. van Duyne, "Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces", J. Vac. Sci. Technol. A 13 (1995) 1553-1558. [28] D. Wang and H. Mohwald, “Rapid Fabrication of Binary Colloidal Crystals by stepwise Spin-Coating”, Adv. Mater. 16 (2004) 244-247. [29] F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks”, Langmuir 13 (1997) 2983-2987.44 [30] M. H. Kim, S. H. lm, O O. Park, “Rapid Fabrication of Two- and Three Dimensional Colloidal Crystal Films via Confined Convective Assembly”, Adv.Funct. Mater. 15 (2005) 1329-1335. [31] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field”, Adv. Mater. 17 (2005) 1507-1511. [32] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces”, Phys. Rev. Lett. 84 (2000) 2997-3000. [33] C. Chen, Electron Beam Lithography for Nanoelectronics, 奈米設備與檢測研 討會HTTP://NANO-TAIWAN.SINICA.EDU.TW/2003NANOCONFERENCES.ASP。 [34] A. J. Haes, C. L. Haynes, R. P. Van Duyne, “Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials”, Mat. Res. Soc. Symp. 636 (2001) D4.8.1-6. [35] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea”, Chapter 4, 2003, Prentice Hall. [36] 廖明吉,"0.1 微米世代的微影解決方法", 奈米通訊,第五卷,第四期, 28-33. [37] E. Miyauchi, H. Arimoto, H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes”, Nucl. Instrum. Methods B39 (1989) 515-520. [38] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays”, J. Phys. Chem. B 103 (1999) 3854-3863. [39] C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, “Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing “, J. Phys. Chem. B 106 (2002) 1898-1902. [40] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”, J.Phys. Chem. B 105 (2001) 5599-5611. [41] A. Kosiorek, W. Kandulski, P. Chudzinski. K. Kempa, M. Giersig, "Shadow Nanosphere. Lithography: Simulation and Experiment", Nano Lett. 4 (2004) 1359-1363. [42] A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, ”Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks”, Small 1 (2005) 439-444. [43] L. Nan and Z. A. Martin, “Size-Tunable Ge Nano-Particle Arrays Patterned on Si Substrates with Nanosphere Lithography and Thermal Annealing“, Jpn. J. Appl. Phys. 41 (2002) 4626-4629. [44] B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong,“Fabrication of Size-Tunable Gold Nanoparticles Array with Nanosphere Lithography, Reactive Ion Etching, and Thermal Annealing”, J. Phys. Chem. B 109 (2005) 11100-11109. [45] Z. P. Huang and D. L. Carnahan, “Growth of Large Periodic Arrays of Carbon Nanotubes”, Appl. Phys. Lett. 82 (2003) 460-462. [46] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren., “Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes”, Nano Lett. 3 (2003) 13-18. [47] Y. Wang, Y. Wang, J. Rybczynski, D. Z. Wang, K. Kempa, Z. F. Ren, W. Z. Li, and B. Kimball, “Periodicity and Alignment of Large-Scale Carbon Nanotubes Arrays”, Appl. Phys. Lett. 85 (2004) 4741-4743. [48] K. H. Park, S. Lee, K. H. Koh, R. L. KBK, T. W. Milne, “Advanced Nanosphere Lithography for the Areal-Density Variation of Periodic Arrays of Vertically Aligned Carbon Nanofibers”, J. Appl. Phys. 97 (2005) 024311-024314. [49] X. Wang, C. J. Summers and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays”, Nano Lett. 4 (2004) 423-426. [50] J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, and Z. F. Ren, “Formation of Super Arrays of Periodic Nanoparticles and Aligned ZnO Nanorods − Simulation and Experiments”, Nano Lett. 4 (2004) 2037-2040. [51] D. Banerjee, J. Rybczynski, J. Y Huang, D. Z. Wang, K. Kempa, and Z. F. Ren,“Large Hexagonal Arrays of Aligned ZnO Nanorods”, Appl. Phys. A 80 (2005) 749–752. [52] H. J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias, “Well-Ordered ZnO Nanowire Arrays on GaN Substrate Fabricated via. Nanosphere Lithography”, J. Crystal Growth 287 (2006) 34–38. [53] B. Fuhrmann, H. S. Leipner, and H. R. Höche, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy”, Nano Lett. 5 (2005) 2524-2527. [54] J. Aizpurua, Garnett W. Bryant, P. Hanarp, D. S. Sutherland, M. Kall, F. J. G. de Abajo, “Tunable Optical Excitations in Gold Nanorings”, Phys. Rev. Lett. 90 (2003) 057401-1~4.46 [55] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays”, Nano Lett. 4 (2004) 2223-2226. [56] X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithography”, Nano Lett. 5 (2005) 1784-1788. [57] A. V. Whitney, B. D. Myers, and R. P. Van Duyne, "Sub-100 nm Triangular Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography", Nano Lett. 4 (2004) 1507-1511. [58] C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure Array Fabrication with a Size-Controllable Natural Lithography”, Appl. Phys. Lett. 71 (1997) 2934-2936. [59] S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of Large-Area Ferromagnetic Arrays Using Etched Nanosphere Lithography”, Langmuir 20 (2004) 11208-11212. [60] P. Wu, L. Q. Peng; X. L. Tuo, X. G. Wang; J. Yuan, “Control of Deposition Channels in Nanosphere Templates for High-Density Nanodot Array Production”, Nanotechnology 16 (2005) 1693–1696. [61] D. G. Choi, H. K. Yu, S. G. Jang, and S. M. Yang, “Colloidal Lithographic Nanopatterning via Reactive Ion Etching”, J. Am. Chem. Soc. 126 (2004) 7019-7025. [62] Y. B. Zhenga, S. J. Wang, A. C. H. Huan, and Y. H. Wang, “Fabrication of Tunable Nanostructure Arrays Using Ion-Polishing-Assisted Nanosphere Lithography”, J. Appl. Phys. 99 (2006) 034308-1~4. [63] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt and T. F. Wang, “Fabrication of Nanopillars by Nanosphere Lithography”, Nanotechnology, 17 (2006) 1339–1343. [64] K. Seeger and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars”, J. Phys. D: Appl. Phys. 32 (1999) L129–L132. [65] A. Wellner, P. R. Preece, J. C. Fowler and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars in Silicon-on-Insulator Wafers”, Microelectron. Eng. 57-58 (2001) 919–924. [66] M. Bale, A. J. Turner and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars at Selected Sites”, J. Phys. D: Appl. Phys. 35 (2002) L11–L14. [67] C. W. Kuo, J. Y. Shiu, P. Chen, “Size and Shape Controlled Fabrication of Large-Area Periodic Nanopillar Arrays”, Chem. Mater. 15 (2003) 2917-2920. 47 [68] F. Sun, W. Cai, Y. Li, B. Q. Cao, Y. Cai and L. Zhang, “Morphology- Controlled Growth of Large Area Two Dimensional Ordered Pore Arrays”, Adv. Funct. Mater. 14 (2004) 283-288. [69] Y. Li, W. Cai, G. Duan, F. Sun, B. Cao, F. Lu,”2D Nanoparticle Arrays by Partial Dissolution of Ordered Pore Films”, Mater. Lett. 59 (2005) 276– 279. [70] Y. Li; W. Cai; B Cao; G. Duan; and F. Sun, “Fabrication of the Periodic Nanopillar Arrays by Heat-Induced Deformation of 2D Polymer Colloidal Monolayer”, Polymer 46 (2005) 12033–12036. [71] F. Sun, W. Cai, Y. Li, L. Jia, and F. Lu, “Direct Growth of Mono- and Multilayer Nanostructured Porous Films on Curved Surfaces and Their Application as Gas Sensors”, Adv. Mater. 17 (2005) 2872–2877. [72] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tash, “Composite TiSi2/ n+poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology” ,IEEE Trans. Electron Device 29 (1982) 547-553. [73] K. Goto, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep-Submicron CMOS Devices”, IEDM (1995) 449-452. [74] F. D. Heurle, C. S. Petrsson, L. Slot, B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Film”, J. Appl. Phys. 53 (1982) 5678-5681. [75] L. J. Chen, J. W. Mayer, and K. N. Tu, "Formation and Structure of Epitaxial Silicides on Silicon", Thin Solid Films 93 (1982) 135-141. [76] S. P. Maruarka, “Silicide for VLSI Applications”, 1983, Academic Press, New York. [77] R. Nath and M. Yeadon, “Direct Observations of the Mechanism of Nickel Silicide Formation on Si(100) and Si0.75Ge0.25 Substrates”, Electrochem. Solid-State Lett. 7 (2004) G231-G234. [78] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1–0.6 mm Oxide Openings Prepared by Electron Beam Lithography”, Appl. Phys. Lett. 69 (1996) 999-1001. [79] I. J. van Gurp and C. Langereis, “Cobalt Silicide Layer on Si Structure and Growth”, J. Appl. Phys. 46 (1975) 4301-4307. [80] T. Ohguro, ”0.25 μm CoSi2 Salicide CMOS Technology Thermally Stable up to 1000℃ with High TDDB Reliability”, Symp. VLSI Technol. 1997 101-102. [81] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi Formation Through SiO2”, Thin Solid Films 386 (2001) 19-26. [82] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, “Leakage Mechanism and Optimized Conditions of Co Salicide Process for Deep Submicron CMOS Devices”, IEDM Tech. Dig. 1995 906–909. [83] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial Growth of CoSi on (111) Si Inside Miniature-Size Oxide by Rapid Thermal Annealing”, J. Appl. Phys. 69 (1991) 4282-4285. [84] J. Y. Yew, L. J. Chena, and W. F. Wu, “Effects of Lateral Confinement on the Growth of CoSi and CoSi2 on (001)Si Inside 0.2±2 μm Oxide Openings Prepared by Electron Beam Lithography”, Mater. Chem. Phys. 61 (1999) 42- 45. [85] I. Y. Hwang, J. H. Kim, S. K. Oh, H. J. Kang and Y. S. Lee,” Ultrathin Cobalt Silicide Film Formation on Si(100)”, Surf. Interface Anal. 35 (2003) 184–187. [86] R. Beyers, and R. Sinclair, “Metastable Phase Formation in Titanium- Silicon Thin Films”, J. Appl. Phy. 57 (1985) 5240-5245. [87] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama,Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai,, “Analysis of Resistance Behavior in Ti and Ni-Salicided Polysilicon Films”, IEEE Trans. Electron Devices ED-41 (1994) 2305-2317. [88] T. Yasuda, S. Yamasaki, S. Gwo, ”Nanoscale Selective-Area Epitaxial Growth of Si Using an Ultrathin SiO2/Si3N4 Mask Patterned by an Atomic Force Microscope”, Appl. Phys.Lett. 77 (2000) 3917-3919. [89] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, I. K. Schuller,“Ordered Magnetic Nanostructures: Fabrication and Properties”, J. Magn. Magn. Mater. 256 (2003) 449-501. [90] M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, “Fabrication of Nano-Dot and Nano-Ring-Arrays by Nanosphere Lithography”, Appl. Phys. A 63 (1996) 617–619. [91] J. Boneberg, F. Burmeister, C. Scha¨fle, and P. Leiderer, “The Formation of Nano-Dot and Nano-Ring Structures in Colloidal Monolayer Lithography”, Langmuir 13 (1997) 7080-7084. [92] D. Jia and A. Goonewardene, “Two-Dimensional Nanotriangle and Nanoring Arrays on Silicon Wafer”, Appl. Phys. Lett. 88 (2006) 053105-1~3. [93] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism”, Physica E 9 (2001) 305-309. [94] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid–Liquid– Solid Mechanism”, Chem. Phys. Lett. 323 (2000) 224-228. [95] The National Technology Roadmap for Semiconductors, Semiconductor Industry Association 1997 109-110. [96] M. Sambasivam; A. Klein; L. H. Sperling, T. Provder; M. Winnik; M. Urban; 49“In Film Formation in Waterborne Coatings”; ACS Symposium Series 648 1996. [97] A. S. Dimitrov, T. Miwa, and K. Nagayama, “A Comparison between the Optical Properties of Amorphous and Crystalline Monolayers of Silica Particles”, Langmuir 15 (1999) 5257 -5264. [98] P. Eaton, J. R. Smith, P. Graham, J. D. Smart, T. G. Nevell, and J. Tsibouklis,“Adhesion Force Mapping of Polymer Surfaces:Factors Influencing Force of Adhesion”, Langmuir 18 (2002) 3387-3389. [99] O. D. Velev; A. M. Lenhoff, “Colloidal Crystals as Templates for Porous Materials”, Curr. Opin. Colloid Interface Sci. 5 (2000) 56-63. [100] S. H. Park and Y. Xia, “Fabrication of Three-Dimensional Macroporous Membranes with Assemblies of Microspheres as Templates”, Chem. Mater. 10 (1998) 1745-1747. [101] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-Crystal Colloidal Multilayers of Controlled Thickness”, Chem. Mater. 11 (1999) 2132-2140. [102] S. H. lm, Y. TaikLim, D. J. Suh, and O O. Park, “Three-Dimensional Self-Assembly of Colloids at a Water-Air Interface: A Novel Technique for the Fabrication of Photonic Bandgap Crystals”, Adv. Mater. 14 (2002) 1367-1369. [103] O. D. Velev; T. A. Jede; R. F. Lobo; A. M. Lenhoff, "Microstructured Porous Silica via Colloidal Crystallization", Nature 389 (1997) 447-448. [104] B. T. Holland, C. F. Blanford, A. Stein, “Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids”, Science 281 (1998) 538-540. [105] D. M. Kuncicky, S. D. Christesen, and O. D. Velev, “Role of the Micro- and Nanostructure in the Performance of Surface-Enhanced Raman Scattering Substrates Assembled from Gold Nanoparticles”, Appl. Spectro. 59 (2005) 401-409. [106] Y. A. Vlasov, N. Yao, D. J. Norris, “Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots”, Adv. Mater. 11 (1999) 165-169. [107] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals (MIPO): Synthesis of Hexagonal Mesoporous Silica Opals”, Adv. Mater. 12 (2000) 1940-1944. [108] P. Jiang, J. F. Bertone, V. L. Colvin, “A Lost-Wax Approach to Monodisperse Colloids and Their Crystals”, Science 291 (2001) 453-547. [109] S. Maenosono, C. D. Dushkin, S. Saita, and Y. Yamaguchi, “Growth of a Semiconductor Nanoparticle Ring during the Drying of a Suspension Droplet”,Langmuir 15 (1999) 957-965. [110] Karen Maex, “Silicides for Integrated Circuits: TiSi2 and CoSi2”, Mater. Sci. Eng. R11 (1993) 53-153.
|