跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 06:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊婉伶
研究生(外文):Wan-Lin Yang
論文名稱:母鼠哺餵與管餵不同劑量二十二碳六烯酸於初生幼鼠腦部及體組織二十二碳六烯酸之含量
論文名稱(外文):Brain and tissues docosahexaenoic acid concentration in neonatal rats breast-fed and tube-fed with different levels of docosahexaenoic acid
指導教授:王果行王果行引用關係
指導教授(外文):Guoo-Shyng Wang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:二十二碳六烯酸初生幼鼠胃插管分布
外文關鍵詞:docosahexaenoic acid (DHA)neonatal pupsgastrostomydistribution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二十二碳六烯酸 (Docosahexaenoic acid, DHA) 為嬰兒成長及腦部發育所必需之長鏈多元不飽和脂肪酸,飲食中DHA最豐富的來源即為魚油。本研究目的在比較以不同餵食方式增加母鼠飲食中或配方奶中DHA ,是否能提升幼鼠體內DHA含量。本實驗分為兩部分進行:第一部分SD母鼠自懷孕開始餵食不同劑量之DHA,分別在控制組、DHA足夠組及DHA高劑量組添加0 , 0.01, 0.1 g DHA/kg B.W.的魚油,於母鼠哺乳第14天擠取鼠奶並測其DHA濃度,哺乳第21天犧牲小鼠。結果顯示,高劑量組鼠奶中DHA 含量 (254 ± 2.5 mg DHA/ 100 ml rat milk) 顯著高於控制組 (82 ± 0.1 mg DHA/ 100 ml rat milk,p<0.05)。幼鼠高劑量組血漿、肝臟、小腦、延腦DHA濃度皆明顯高於控制組 (p<0.05)。控制組幼鼠DHA攝食至肝及腦組織回收率顯著高於另兩組。第二部份初生三天SD幼鼠經胃插管手術,控制組、DHA足夠組及DHA高劑量組中分別添加 0, 5, 300 mg DHA/ 100 ml milk,經管餵14天後,測其體重、臟器重並分析管餵幼鼠血漿、肝及腦中DHA濃度。結果顯示,DHA高劑量組在血漿 (333.78 ± 73.10μg/ml)、肝臟 (15.37 ± 1.84 mg/g) 均高於控制組 (血漿: 64.57 ± 36.81μg/ml ; 肝臟: 3.15 ± 2.04 mg/g,p<0.05),同樣的結果也反映在腦組織DHA濃度中,且DHA足夠組配方奶中DHA至幼鼠血液、肝臟和腦組織之回收率皆高於高劑量組 (p<0.05)。管餵幼鼠之DHA足夠組血漿DHA濃度為 (92.70 ± 54.35μg/ml) 與控制組 (64.57 ± 36.81μg/ml) 比較得知,目前市售配方奶添加之DHA量 (約達5 mg DHA /100 ml milk) 並不能達到提高幼鼠體內DHA含量之效果。人工鼠奶高劑量組DHA的濃度 (407 mg DHA/100 ml milk)在提高初生幼鼠血漿、肝及腦組織DHA濃度,與母乳哺餵組 (254 mg DHA/100 ml milk) 有類似的效果。
Docosahexaenoic acid (DHA) is a long-chain polyunsaturated fatty acid, essential for the growth and development of brain in infants. Main dietary source of DHA is fish oil. The purpose of this study is to compare plasma and brain tissues’ DHA levels between pups by breast-fed and tube-fed. The first part of this study was to feed pregnant rats with different levels of DHA in the diets, including control (without DHA added), DHA-adequate ( 0.01 g DHA/kg B.W. added) and DHA-high group ( 0.1 g DHA/kg B.W. added) diets. Rat’s milk was collected at the 14th day of lactation, followed by determination of DHA concentration. Pups were sacrificed at the 21th day of lactation. Results showed that DHA-high group had higher DHA content in milk (254 ± 2.5 mg DHA/ 100 ml rat milk) than rat in the control group (82 ± 0.1 mg DHA/ 100 ml rat milk, p<0.05). However, compared with the control group, higher DHA concentration was discovered in plasma, liver, cerebellum and medulla oblongata of pups in the DHA-high group. Higher recovery rate of dietary DHA to organs or tissues were found in rat control group than that in other two groups. The second part of this study was to feed neonatal pups with different levels of DHA in the artificial rat milk by gastrostomy. DHA contents in the formula (control, adequate and high group) were designed to be 0, 5 and 300 mg DHA/ 100 ml milk, respectively. After 14 days of feeding, pups were sacrificed. Significantly higher DHA concentration was found in plasma, liver and brain tissues of the pups in the DHA-high group than pups in control group. The recovery rate of pups by gastrostomy, and there dietary DHA to plasma, liver or brain tissues in DHA-adequate pups were higher than that in pups of DHA-high group. Except liver and thalamus and hypothalamus, DHA contents in the rest of the tissues of breast-fed group were higher than that of tube-fed group. Compared of DHA concentration between DHA adequate (92.70 ± 54.35μg/ml) and control (64.57 ± 36.81μg/ml) group by tube-fed, the results suggested that the amount of DHA added in the commercial infant formula, i.e. up to 5 mg DHA/ 100 ml milk, might not be high enough to influence level of body DHA in the neonatal pups. The DHA added in the tube-fed formula over 300 mg DHA/100 ml might have the similar effect on elevation of DHA levels in plasma, liver and brain tissues as breast milk (254 mg DHA/100 ml rat milk).
目錄

第一章 前言 1
第二章 文獻回顧 2
一、二十二碳六烯酸 (DHA)簡介 2
(一) DHA的優點 2
(二) DHA的缺點 4
二、 飲食中DHA的來源 5
(一) 成人飲食中DHA的來源 5
(二) 嬰幼兒飲食中DHA的來源 5
三、母乳與配方奶中 DHA之含量 6
(一) 母乳中DHA之含量 6
(二) 配方奶中DHA之含量 7
(三) 母乳與配方奶DHA含量之比較 7
四、 DHA在器官組織之分布及回收率 8
(一) 動物試驗研究 8
(二) 人體試驗研究 11
五、 DHA與相關疾病之研究 12
(一) 與免疫疾病之研究 12
(二) 與心血管疾病之研究 13
(三) 與癌症之研究 14
(四) 與阿茲海默氏症之研究 15
六、DHA對嬰幼兒生長及腦部發育之影響 16
(一) DHA對嬰幼兒生長之影響 16
(二) DHA對嬰幼兒腦部發育之影響 17
第三章 研究目的 18
第四章 材料與方法 19
一、實驗設計
(一) 母鼠哺餵初生幼鼠實驗設計 19
(二) 胃管管餵初生幼鼠實驗設計 20
二、 實驗動物飼養 21
(一) 飼養環境 21
(二) 陰道抹片驗孕測試 22
(三) 收集鼠奶 23
(四) 人工鼠奶配製 23
(五) 胃造口手術 24
三、動物犧牲及樣品前處理 25
(一) 動物犧牲 25
(二) 樣品前處理 26
四、樣本分析項目與方法 26
(一) 臟器體重比 26
(二) 鼠奶及血漿脂肪酸分析 27
(三) 肝臟及腦組織脂肪酸分析 27
(四) 氣相層析儀分析條件 28
(五) DHA定量方法 29
五、統計分析 29
第五章 結果與討論 30
第一節 給予懷孕母鼠不同濃度DHA飲食對初生幼鼠體內DHA含量之
影響 30
(一) 鼠奶中DHA 濃度 30
(二) 懷孕母鼠與初生幼鼠之生長狀況 31
(三) 懷孕母鼠攝取不同劑量DHA對初生幼鼠血漿、肝及腦組織
DHA含量之影響 33
(四) 懷孕母鼠DHA攝取量與鼠奶、初生幼鼠血漿、肝及腦組織中
DHA濃度之相關性 34
(五) 母鼠DHA攝取量在鼠奶及初生幼鼠血漿、肝及腦組織之DHA
回收率 35
第二節 管餵幼鼠不同濃度DHA飲食對初生幼鼠體內DHA含量之影響
37
(一) 人工鼠奶DHA濃度 37
(二) 初生幼鼠生長狀況 37
(三) 管餵幼鼠不同劑量DHA對初生幼鼠血液及肝組織DHA濃度之
影響 38 38
(四) 管餵幼鼠DHA攝取量與初生幼鼠血漿、肝及腦組織DHA濃
度之相關性 39
(五) 管餵幼鼠DHA攝取量在初生幼鼠血漿、肝及腦組織之DHA回收率 39
第三節 比較不同餵食方式之DHA高劑量組對初生幼鼠血漿、肝及腦
組織DHA濃度及回收率之影響 40
(一) 比較不同餵食方式之DHA高劑量組對初生幼鼠血漿、肝及腦
組織DHA濃度之影響 40
(二) 比較不同餵食方式之DHA高劑量組對初生幼鼠血漿、肝及腦
組織DHA回收率之影響 41
第六章 結論 42
第七章 參考文獻 43

表目錄

表一 人工鼠奶組成 53
表二 給予懷孕母鼠不同劑量DHA對母鼠飼料效應、鼠奶中DHA含量
及初生幼鼠體重之影響 54
表三 給予懷孕母鼠不同劑量DHA對初生幼鼠臟器重之影響 55
表四 給予懷孕母鼠不同劑量DHA對初生幼鼠臟器體重比之影響 56
表五 給予懷孕母鼠不同劑量DHA對初生幼鼠血漿、肝及腦組織
DHA濃度之影響 57
表六 懷孕母鼠DHA攝取量與鼠奶、初生幼鼠血漿、肝及腦組織DHA
濃度之相關性 58
表七 懷孕母鼠DHA攝取量在鼠奶及初生幼鼠血漿、肝及腦組織之
DHA回收率 59
表八 給予管餵幼鼠不同劑量DHA對其體重、攝食量之影響 60
表九 給予管餵幼鼠不同劑量DHA對其臟器重之影響 61
表十 給予管餵幼鼠不同劑量DHA對其臟器體重比之影響 62
表十一 給予管餵幼鼠不同劑量DHA對其血漿、肝組織DHA 濃度之影
響 63
表十二 管餵幼鼠不同劑量DHA其血漿、肝及腦組織DHA濃度之相關
性 64
表十三 管餵幼鼠不同劑量DHA其血漿、肝及腦組織之DHA回收率 65
表十四 比較不同餵食方式之DHA高劑量組對初生幼鼠血漿、肝及腦組
織DHA濃度之影響 66
表十五 比較不同餵食方式之DHA高劑量組對初生幼鼠血漿、肝及腦組
織DHA回收率之影響 67
圖目錄

圖一 ω -6 及 ω-3脂肪酸代謝途徑 3
圖二 母鼠哺餵初生幼鼠實驗設計圖 19
圖三 胃管管餵初生幼鼠實驗設計圖 20
圖四 人工鼠奶配製流程圖 68
圖五 胃插管之製作 69
圖六 給予不同劑量DHA對懷孕及哺乳期母鼠生長曲線之影響 70

附錄

附錄表一 動物飼料組成百分比 71
附錄圖一 小腦組織中DHA及其他脂肪酸含量之氣相層析圖 73
第七章 參考文獻

矢澤ㄧ良。驚異的魚油DHA、EPA療效。台北縣:世茂出版社,1998:100。

周宇光、吳子聰、張淑緘、陳懋良。母乳中長鏈多元不飽和脂肪酸的分析。醫學研究1993;13:301-8。

陳揚燕、李美琁、張淑緘。DHA會使人變聰明嗎?從母奶及嬰兒配方奶粉
談起。國防醫學1996;23:237-43。

楊國珠。母乳中二十碳四烯酸及二十二六烯酸含量與影響因子探討。國立
台灣師範大學家教教育研究所營養科學與教育組碩士論文,2001。

Abedin L, Lien EL, Vingrys AJ, Sinclair AJ. The effects of dietary
alpha-linolenic acid compared with docosahexaenoic acid on brain,
retina, liver, and heart in the guinea pig. Lipids. 1999;34:475-82.

Arbuckle LD, Innis SM. Docosahexaenoic acid in developing brain and retina of piglets fed high or low alpha-linolenate formula with and without fish oil. Lipids. 1992;27:89-93.

Arbuckle LD, Innis SM. Docosahexaenoic acid is transferred through maternal diet to milk and to tissues of natural milk-fed piglets. J Nutr.1993;123:1668-75.

Atkinson TG, Murray L, Berry DM, Ruthig DJ, Meckling-Gill KA. DHA feeding provides host protection and prevents fibrosarcoma-induced hyperlipidemia while maintaining the tumor response to araC in Fischer 344 rats. Nutr Cancer. 1997;28:225-35.

Auestad N, Korsak RA, Bergstrom JD, Edmond J. Milk-substitutes comparable to rat's milk; their preparation, composition and impact on development and metabolism in the artificially reared rat. Br J Nutr. 1989;61:495-518.

Bauer JE, Heinemann KM, Lees GE, Waldron MK. Docosahexaenoic acid accumulates in plasma of canine puppies raised on alpha-linolenic acid-rich milk during suckling but not when fed alpha-linolenic acid-rich diets after weaning. J Nutr. 2006;136:2087S-89S.

Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 2006;29:263–71.

Berghaus TM, Demmelmair H, Koletzko B. Fatty acid composition of lipid classes in maternal and cord plasma at birth. Eur J Pediatr. 1998;157:763-68.
Beydoun MA, Kaufman JS, Satia JA, Rosamond W, Folsom AR. Plasma n-3 fatty acids and the risk of cognitive decline in older adults: the Atherosclerosis Risk in Communities Study.Am J Clin Nutr. 2007;85:1103-11.
Bhattacharya A, Sun D, Rahman M, Fernandes G. Different ratios of eicosapentaenoic and docosahexaenoic omega-3 fatty acids in commercial fish oils differentially alter pro-inflammatory cytokines in peritoneal macrophages from C57BL/6 female mice. J Nutr Biochem. 2006;22 [Epub ahead of print]
Bornschein RL, Fox DA, Michaelson IA. Estimation of daily exposure in neonatal rats receiving lead via dam's milk. Toxicol Appl. 1977;40:577-87.

Bowen RA, Clandinin MT. Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium-potassium ATPase kinetics in developing rats. J Neurochem. 2002;83:764-74.

Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85:1457-64.

Broughton KS, Johnson CS, Pace BK, Liebman M, Kleppinger KM. Reduced asthma symptoms with n-3 fatty acid ingestion are related to 5-series leukotriene production. Am J Clin Nutr. 1997;65:1011-17.

Carper J. Your miracle brain. Harper Collins, New York. 2000.

Carrié I, Clément M, de Javel D, Francès H, Bourre JM. Specific phospholipid fatty acid composition of brain regions in mice. Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res. 2000;1:465-72.

Chandra RK. Five-year follow-up of high-risk infants with family history of allergy who were exclusively breast-fed or fed partial whey hydrolysate, soy, and conventional cow's milk formulas. J Pediatr Gastroenterol Nutr. 1997;4:380-8.

Chung WL, Chen JJ, Su HM. Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J Nutr. 2008;38:1165-71.

Clandinin MT, Chappell JE, Heim T, Swyer PR, Chance GW. Fatty acid accretion in fetal and neonatal liver: implications for fatty acid requirements. Early Hum Dev. 1981;5:7-14.

Connor WE, Neuringer M, Lin DS. Dietary effects on brain fatty acid composition: the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of rhesus monkeys. J Lipid Res. 1990;1:237-47.

Crawford MA. The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr. 1993;57:703S-10S.

Crawford MA, Doyle W, Drury P, Lennon A, Costeloe K, Leighfield M. n-6 and n-3 fatty acids during early human development. J Intern Med Suppl. 1989;731:159-69.

Crawford MA, Hassam AG and Stevens PA. Essential fatty acid requirements in pregnancy and lactation with special reference to brain development. Prog Lipid Res. 1991;20: 31–4.

Dahlen SE, Bjork J, Hedqvist P, Arfors KE, Hammarstrom S, Lindgren JA, Samuelsson B. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci U S A. 1981;78:3887-91.

Das UN. Can essential fatty acids reduce the burden of disease(s)? Lipids Health Dis. 2008 a;7:9.

Das UN. Beneficial actions of polyunsaturated fatty acids in cardiovascular diseases: But, how and why? Current Nutr Food Sci. 2008b;4:2-31.

Delbosc S, Glorian M, Le Port AS, Béréziat G, Andréani M, Limon I. The benefit of docosahexanoic acid on the migration of vascular smooth muscle cells is partially dependent on Notch regulation of MMP-2/-9. Am J Pathol. 2008;172:1430-40.

Desrosiers M, Proud D, Naclerio RM. Lack of effect of hot, humid air on response to nasal challenge with histamine. Ann Otol Rhinol Laryngol. 1996;105:146-54.

Diau GY, Hsieh AT, Sarkadi-Nagy EA, Wijendran V, Nathanielsz PW, Brenna JT. The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system. BMC Med. 2005;3:11.

Diep QN, Touyz RM, Schiffrin EL Docosahexaenoic acid, a peroxisome proliferator-activated receptor-alpha ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38 mitogen-activated protein kinase. Hypertension. 2000;36:851–5.

Dijck-Brouwer DA, Hadders-Algra M, Bouwstra H, Decsi T, Boehm G, Martini IA, Boersma ER, Muskiet FA. Lower fetal status of docosahexaenoic acid, arachidonic acid and essential fatty acids is associated with less favorable neonatal neurological condition, Prostaglandins Leukot. Essent. Fatty Acids 2005;72:21–8.

Dold S, Wjst M, von Mutius E, Reitmeir P, Stiepel E. Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch Dis Child. 1992;67:1018-22.

Dutta-Roy AK. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am J Clin Nutr. 2000;71:315S-22S.

Edenharter G, Bergmann RL, Bergmann KE, Wahn V, Forster J, Zepp F, Wahn U. Cord blood-IgE as risk factor and predictor for atopic diseases. Clin Exp Allergy. 1998;28:671-8.

Fidler N, Sauerwald T, Pohl A, Demmelmair H, Koletzko B. Docosahexaenoic acid transfer into human milk after dietary supplementation: a randomized clinical trial. J Lipid Res. 2000;41:1376-83.

Fiocchi A, Martelli A, De Chiara A, Moro G, Warm A, Terracciano L. Primary dietary prevention of food allergy. Ann Allergy Asthma Immunol. 2003; 91:3-12.

Florent-Bechard S, Malaplate-Armand C, Koziel V, Kriem B, Olivier JL, Pillot T, Oster T. Towards a nutritional approach for prevention of Alzheimer’s disease: biochemical and cellular aspects. J Neurol Sci. 2007;262:27-36.

Folch J, Lees M, Sloane L, Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497-509.

Freese R, Mutanen M. Small effects of linseed oil or fish oil supplementation on postprandial changes in hemostatic factors. Thromb Res. 1997;85:147-52.

Ghosh J, Myers CE. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun. 1997;235:418-23.

Gibson RA, Kneebone GM. Fatty acid composition of human colostrum and mature breast milk. Am J Clin Nutr. 1981;34:252-7.

Gibson RA, Neumann MA, Makrides M. Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur J Clin Nutr. 1997;51: S78–S84.

Goode JA, Taylor JC. A simple method of milking small animals. J Physiol. 1974;242:5P-7P.

Hadders-Algra M. Prenatal long-chain polyunsaturated fatty acid status: the importance of a balanced intake of docosahexaenoic acid and arachidonic acid. J Perinat Med. 2008;36:101-9.

Haggarty P. Effect of placental function on fatty acid requirements during pregnancy. Eur J Clin Nutr. 2004;58:1559-70.

Halvorsen DS, Hansen JB, Grimsgaard S, Bonaa KH, Kierulf P, Nordoy A. The effect of highly purified eicosapentaenoic and docosahexaenoic acids on monocyte phagocytosis in man. Lipids. 1997;32:935-42.

Hall WG. Weaning and growth of artificially reared rats. Science. 1975; 190:1313-5.

Harkness JE, Wagner JE Biological and husbandry in : The biology and medicine of rabbit and rodents. 1983;PP.43-50.

Hart CM, Tolson JK, Block ER. Supplemental fatty acids alter lipid peroxidation and oxidant injury in endothelial cells. Am J Physiol. 1991;260:L481-8.

Harris WS, Connor WE, Lindsey S. Will dietary omega-3 fatty acids change the composition of human milk? Am J Clin Nutr. 1984;40:780-5.

Harris WS. Extending the cardiovascular benefits of omega-3 Fatty acids. Curr Atheroscler Rep. 2005;7:375-80.

Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y, Ishibashi Y, Oka J, Shido O. Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer's disease model rats. J Neurochem. 2002;81:1084-91.

Hashimoto M, Tanabe Y, Fujii Y, Kikuta T, Shibata H, Shido O. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats. J Nutr. 2005;135:549-55.

Haubner LY, Stockard JE, Saste MD, Benford VJ, Phelps CP, Chen LT, Barness L, Wiener D, Carver JD. Maternal dietary docosahexanoic acid content affects the rat pup auditory system. Brain Res Bull. 2002;58:1-5.

Helland IB, Saarem K, Saugstad OD, Drevon CA. Fatty acid composition in maternal milk and plasma during supplementation with cod liver oil. Eur J Clin Nutr. 1998;52 :839–45.

Henderson RA, Jensen RG, Lammi-Keefe CJ, Ferris AM, Dardick KR. Effect of fish oil on the fatty acid composition of human milk and maternal and infant erythrocytes. Lipids. 1992;27:863-9.

Higuchi T, Shirai N, Suzuki H. Reduction in plasma glucose after lipid changes in mice fed fish oil, docosahexaenoic acid, and eicosapentaenoic acid diets. Ann Nutr Metab. 2006;50:147-54.

Hodge L, Salome CM, Peat JK, Haby MM, Xuan W, Woolcock AJ. Consumption of oily fish and childhood asthma risk. Med J Aust. 1996; 164:137-40.

Holman RT, Johnson SB, Hatch TF. A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr. 1982;35:617-23.

Hornstra G. Dietary lipids, platelet function and arterial thrombosis. Wien Klin Wochenschr. 1989;101:272-7.

Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res. 1999;40:211-25.

Imaizumi K, Adan Y, Shibata K. Role of dietary lipids in arteriosclerosis in experimental animals. Biofactors. 2000;13:25-8.

Innis SM. Essential fatty acids in growth and development. Prog Lipid Res. 1991;30:39–103.

Innis SM. Essential fatty acid transfer and fetal development. Placenta.
2005;26:S70–5.

Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137:855-9.

Innis SM, Kuhnlein HV. Long-chain n-3 fatty acids in breast milk of Inuit women consuming traditional foods. Early Hum Dev. 1988;18:185-9.

Innis SM, Foote KD, MacKinnon MJ, King DJ. Plasma and red blood cell fatty acids of low-birth-weight infants fed their mother's expressed breast milk or preterm-infant formula. Am J Clin Nutr. 1990;51:994-1000.

Jensen CL, Voigt RG, Prager TC, Zou YL, Fraley JK, Rozelle JC, Turcich MR, Llorente AM, Anderson RE, Heird WC. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am J Clin Nutr. 2005;82:125-32.

Kitajka K, Puskas LG, Zvara A, Hackler L, Jr., Barcelo-Coblijn G, Farkas ST. The role of n-3 fatty polyunsaturated fatty acids in brain:modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci USA. 2002;99:2619–24.

Kneebone GM, Kneebone R, Gibson RA. Fatty acid composition of breast milk from three racial groups from Penang, Malaysia. Am J Clin Nutr. 1985;41:765-9.

Kohn G, Sawatzki G, Biervliet JP, Rossenau M. Diet and essential fatty acid status of term infants. Acta Paediatr Suppl. 1994;402:69–74.

Koletzko B, Müller J. Cis- and trans-isomeric fatty acids in plasma lipids of newborn infants and their mothers. Biol. Neonate. 1990;57: 172–8.

Koletzko B, Thiel I, Abiodun PO. Fatty acid composition of mature human milk in Nigeria. Z Ernahrungswiss. 1991;30:289-97.

Koletzko B, Cetin I, Brenna JT; Perinatal Lipid Intake Working Group; Child Health Foundation; Diabetic Pregnancy Study Group; European Association of Perinatal Medicine; European Association of Perinatal Medicine; European Society for Clinical Nutrition and Metabolism; European Society for Paediatric Gastroenterology, Hepatology and Nutrition, Committee on Nutrition; International Federation of Placenta Associations; International Society for the Study of Fatty Acids and Lipids. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007;98:873-7.

Koletzko B, Lien E, Agostoni C, Böhles H, Campoy C, Cetin I, Decsi T, Dudenhausen JW, Dupont C, Forsyth S, Hoesli I, Holzgreve W, Lapillonne A, Putet G, Secher NJ, Symonds M, Szajewska H, Willatts P, Uauy R; World Association of Perinatal Medicine Dietary Guidelines Working Group The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med. 2008;36:5-14.

Kramer JK, Sauer FD, Farnworth ER, Wolynetz MS, Jones G, Rock GA. Hematological and lipid changes in newborn piglets fed milk replacer diets containing vegetable oils with different levels of n-3 fatty acids. Lipids. 1994;29:859-68.

Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57.

Larque´ E, Demmelmair H, Klingler M, De Jonge S, Bondy B, Koletzko B. Expression pattern of fatty acid transport protein-1 (FATP-1), FATP-4 and heart-fatty acid binding protein (H-FABP) genes in human term placenta. Early Hum Dev. 2006;82:697–701.

Larqué E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, Demmelmair H, Caño A, Gil A, Bondy B, Koletzko B. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr. 2006;84:853–61.

Lauritzen L, Hansen HS, Jorgensen MH and Michaelsen KF. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 2001;40:1-94.

Lim SY, Hoshiba J, Salem N Jr. An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J Neurochem. 2005;95:848-57.

Little SJ, Lynch MA, Manku M, Nicolaou A. Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: a lipidomic analysis. Prostaglandins Leukot Essent Fatty Acids. 2007;77:155-62.

Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K Serhan CN, Bazan NG. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest. 2005;115:2774-83.

Makrides M, Neumann MA, Gibson RA. Effect of maternal docosahexaenoic acid (DHA) supplementation on breast milk composition. Eur J Clin Nutr. 1996;50:352-7.

Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr. 1994;60:189-94.

Makrides M, Duley L, Olsen SF. Marine oil, and other prostaglandin precursor, supplementation for pregnancy uncomplicated by pre-eclampsia or intrauterine growth restriction. Cochrane Database Syst Rev. 2006;3:CD003402.

Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332:133-8.

Makrides M, Neumann MA, Simmer K, Gibson RA. Dietary long-chain polyunsaturated fatty acids do not influence growth of term infants: A randomized clinical trial. Pediatrics. 1999;104:468-75.

McGuill MW, Rowan AN. ILAR NEWS. 1989;31:5-20.

Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol. 2003;60:940-6.

Moriguchi T, Loewke J, Garrison M, Catalan JN, Salem N Jr. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J Lipid Res. 2001;42:419-27.

Moriguchi T, Lim SY, Greiner R, Lefkowitz W, Loewke J, Hoshiba J, Salem N Jr. Effects of an n-3-deficient diet on brain, retina, and liver fatty acyl composition in artificially reared rats. J Lipid Res. 2004;45:1437-45.

Murakami R, Nars PW, Nakamura H. Artificial feeding of the newborn rat. Kobe J Med Sci. 1979;25:175-81.

Nettleton JA. Are n-3 fatty acids essential nutrients for fetal and infant development? J Am Diet Assoc. 1993;93:58-64.

Neuringer M, Anderson GJ, Connor WE. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu Rev Nutr. 1988;8:517-41.

Pan DA, Storlien LH. Dietary lipid profile is a determinant of tissue phospholipid fatty acid composition and rate of weight gain in rats. J Nutr. 1993;123:512-9.

Parthasarathy S, Quinn MT, Schwenke DC, Carew TE, Steinberg D. Oxidative modification of beta-very low density lipoprotein. Potential role in monocyte recruitment and foam cell formation. Arteriosclerosis. 1989;9:398-404.

Ponder DL, Innis SM, Benson JD, Siegman JS. Docosahexaenoic acid status of term infants fed breast milk or infant formula containing soy oil or corn oil. Pediatr Res. 1992;32:683-8.

Rodriguez M. and B. Koletzko Polyunsaturated fatty acids in human milk. J. Mammary Gland Biol. Neoplasia. 1999;4:269-84.

Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst. 1995;87:587-92.

Ruan C, Liu X, Man H, Ma X, Lu G, Duan G, DeFrancesco CA, Connor WE. Milk composition in women from five different regions of China: the great diversity of milk fatty acids. J Nutr. 1995;125:2993-8.

Sanders TA, Ellis FR, Dickerson JW. Studies of vegans: the fatty acid composition of plasma choline phosphoglycerides, erythrocytes, adipose tissue, and breast milk, and some indicators of susceptibility to ischemic heart disease in vegans and omnivore controls. Am J Clin Nutr. 1978;31:805-13.

Sanders TA, Reddy S. The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J Pediatr. 1992;120:S71-7.

Sarkadi-Nagy E, Wijendran V, Diau GY, Chao AC, Hsieh AT, Turpeinen A, Lawrence P, Nathanielsz PW, Brenna JT. Formula feeding potentiates docosahexaenoic and arachidonic acid biosynthesis in term and preterm baboon neonates. J Lipid Res. 2004;45:71-80.

Sauerwald TU, Hachey DL, Jensen CL, Heird WC. New insights into the metabolism of long chain polyunsaturated fatty acids during infancy. Eur J Med Res. 1997;21:88-92.

Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle DJ, Wilson PW, Wolf PA. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006;63:1545-50.

Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 1998;8:447-53.

Shiina T, Terano T, Saito J, Tamura Y, Yoshida S. Eicosapentaenoic acid and docosahexaenoic acid suppress the proliferation of vascular smooth muscle cells. Atherosclerosis. 1993;104:95-103.

Sherwood L Human physiology from cells to systems. Fifth Edition 2004;5:133-83.

Singh M. Essential fatty acids, DHA and human brain. Indian J Pediatr. 2005;72:239-42.

Siscovick DS, Raghunathan TE, King I, Weinmann S, Wicklund KG, Albright J, Bovbjerg V, Arbogast P, Smith H, Kushi LH. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA. 1995;274:1363-7.

Skuladottir GV, Gudmundsdottir S, Olafsson GB, Sigurdsson SB, Sigfusson N, Axelsson J. Plasma fatty acids and lipids in two separate, but genetically comparable, Icelandic populations. Lipids. 1995;30:649-55.

Sperling RI. Effects of dietary fish oil on leukocyte leukotriene and PAF generation and on neutrophil chemotaxis. World Rev Nutr Diet. 1991;66:391-400.

Stark KD, Lim SY, Salem N Jr. Artificial rearing with docosahexaenoic acid and n-6 docosapentaenoic acid alters rat tissue fatty acid composition. J Lipid Res. 2007;48:2471-7.

Szajewska H, Horvath A, Koletzko B. Effect of n-3 long-chain polyunsaturated fatty acid supplementation of women with low-risk pregnancies on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2006;83:1337-44.

Terano T, Shiina T, Yamamoto K, Ban T, Hirai A, Tamura Y, Saito Y, Kitagawa M. Eicosapentaenoic acid and docosahexaenoic acid inhibit DNA synthesis through inhibiting cdk2 kinase in vascular smooth muscle cells. Ann N Y Acad Sci. 1997;811:369-77.

Thies F, Garry JM, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, Grimble RF. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet. 2003;361:477-85.

Toit-Kohn JL, Louw L, Engelbrecht AM. Docosahexaenoic acid induces
apoptosis in colorectal carcinoma cells by modulating the PI3 kinase and p38
MAPK pathways. J Nutr Biochem. 2008;May 12. [Epub ahead of print].

Valenzuela A, Nieto S, Sanhueza J, Nuñez MJ, Ferrer C. Tissue accretion and milk content of docosahexaenoic acid in female rats after supplementation with different docosahexaenoic acid sources.Ann Nutr Metab. 2005;49:325-32.

Voss A, Reinhart M, Sankarappa S, Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19 - docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem. 1991;266:19995-20000.

Vreugdenhil M, Bruehl C, Voskuyl RA, Kang JX, Leaf A, Wadman WJ. Polyunsaturated fatty acids modulate sodium and calcium currents in
CA1 neurons. Proc Natl Acad Sci USA. 1996;93:12559–63.

Wada K, Nakajima A, Katayama K, Kudo C, Shibuya A, Kubota N, Terauchi Y, Tachibana M, Miyoshi H, Kamisaki Y, Mayumi T, Kadowaki T, Blumberg RS. Peroxisome proliferator-activated receptor gammamediated regulation of neural stem cell proliferation and differentiation. J Biol Chem. 2006;281:12673–81.

Ward G.R, Huang YS, Bobik E, Xing H-C, Mutsaers L, Auestad N, Montalto M and Wainwright P. Long-chain polyunsaturated fatty acid levels in formulae influence deposition of docosahexaenoic acid and arachidonic acid in brain and red blood cells of artificially reared neonatal rats. J Nutr. 1998;128:2473-87.

Wardlaw GM, Kessel MW Perspectives In Nutrition. Fifth edition. 2002;PP.207.

Weber C, Aepfelbacher M, Lux I, Zimmer B, Weber PC. Docosahexaenoic acid inhibits PAF and LTD4 stimulated [Ca2+] i-increase in differentiated monocytic U937 cells. Biochim Biophys Acta. 1991;1133:38-45.

Winters BL, Yeh SM, Yeh YY. Linolenic acid provides a source of docosahexaenoic acid for artificially reared rat pups. J Nutr. 1994;124:1654-9.

Woods J, Ward G, Salem N Jr. Is docosahexaenoic acid necessary in infant formula? Evaluation of high linolenate diets in the neonatal rat. Pediatr Res. 1996;40:687-94.

Xiao Y, Huang Y, Chen ZY. Distribution, depletion and recovery of docosahexaenoic acid are region-specific in rat brain. Br J Nutr. 2005;94:544-50.

Xu J, Chen S, Ahmed SH, Chen H, Ku G, Goldberg MP, Hsu CY. Amyloid-beta peptides are cytotoxic to oligodendrocytes. J Neurosci. 2001;21:RC118.

Yeh YY, Yeh SM, Lien EL. Modification of milk formula to enhance accretion of long-chain n-6 and n-3 polyunsaturated fatty acids in artificially reared infant rats. Lipids. 1998;33:513-20.

Yonekubo A, Honda S, Okano M, Takahashi K, Yamamoto Y. Dietary fish oil alters rat milk composition and liver and brain fatty acid composition of fetal and neonatal rats. J Nutr. 1993;123:1703-8.

Yuhas R, Pramuk K, Lien EL. Human milk fatty acid composition from nine countries varies most in DHA. Lipids. 2006;41:851–8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top