跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧光義
研究生(外文):Kuan-Yi Lu
論文名稱:新型內鎖式骨髓內釘治療股骨幹骨折之有限元分析
論文名稱(外文):Finite Element Analysis of New Intramedullary Interlocking Nails in Treatment of Femoral Shaft Fractures
指導教授:楊世偉楊世偉引用關係
指導教授(外文):SaiWei Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:112
中文關鍵詞:骨釘有限元股骨骨折
外文關鍵詞:nailfinite elementFemurfracture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先以X光影像量測股骨的幾何尺寸,進而探討適用於華人的股骨髓內釘之設計參數,再以CAE 軟體 I-deas 設計新型的內鎖型髓內釘。將新型骨釘與傳統骨釘如一體成形骨釘植入股骨,施以步態周期 13% 時的股骨受力,模擬骨幹13個位置寬 5mm的粉碎性骨折,並配合3種癒合程度(0%,33%,66%),進行有限元分析以比較其應力分布及骨釘強度。並就股骨幹中段骨折探討動態模鎖定的可行性、鎖定螺絲數目對骨內釘強度及骨癒合的效應及螺絲鬆脫的機制。
本研究結果顯示國人股骨的長度大多介於448.5至384.8mm之間,骨髓內最寬處平均為19.2mm,最窄為12.2mm。新型骨釘全長360mm,骨釘的外徑採用13mm、壁厚3mm以適用於國人。其主要由三部分組成,最遠端及中段元件皆長 150mm,最近端元件長60mm。兩元件間以厚度5mm的四齒及末端套合(深度30mm),前後側各有一條鋼索貫穿各元件,用以強化骨釘及改進手術方法。材質為不銹鋼合金,楊氏係數為170GPa,疲勞強度為433MPa,與一體成形骨釘類似。
有限元分析結果顯示在骨折0%癒合時,一體成形骨釘主要產生應力集中的位置在螺孔及接近骨折處的部位,最大應力集中係數6.79;新型骨釘則發生在第一、二節的公齒及螺孔處,最大應力集中係數為27.49。兩者在骨折癒合達33%後應力分佈皆趨於穩定,一體成形骨釘之最大應力集中係數為3.80,組合式骨釘則為4.35。此外動態鎖定的方式並不適用於新型骨釘。螺絲數目的探討方面,遠端第一根螺絲可視病人骨折範圍及骨質決定鎖定與否,但剩餘的近遠端兩螺孔間距不宜超過300mm;第二根則務必鎖緊;螺絲鬆脫則會造成螺絲的剪力破壞或彈出及支撐強度減弱。
新型骨釘的初期強度雖不如一體成形骨釘,卻較能刺激骨折癒合。骨折處癒合33%後的峰值應力雖高於一體成形骨釘 20 %,仍符合生理負載下的需要。
The design parameters of a femoral intramedullar (IM) nail were investigated through measuring the geometrical dimensions of femur X-ray films. A CAE commercial package I-Deas was used to model and investigate the functions of new designed modular IM nail and to compare with the conventional one - Richard nail. Two finite element models were constructed from CT femoral imaged, namely, femur with the designed nail and femur with Richard nail. Each modeling was analyzed in the cases of 5mm thick communication fragment in 13 different locations along the femoral shaft in three different stages of fracture recovery (0%, 33%, 66%) with physiological external forces applied as that of at 13% of a gait cycle. In addition, the mechanisms of midshaft fracture with dynamic locking, effect of number of locking screws, and effect of screw loosening were studied.
The results of measurement revealed that the femur length of sampled Chinese is between 448.5 and 384.8mm, the average medullar width is ranged from 19.2mm to 12.2mm. Based on this, the designed nail consists of three components. The distal and middle parts are 150 mm long each, and the proximal part is 60 mm. The total length is 360mm with 13mm diameter and 3 mm wall thickness to fit the Chinese femur. Each segment has four teeth-slots as well as 30mm taper lock in order to integrate segments and to resist the torsional load. In addition to that there are two stainless wires pass through every component in order to strengthen the nail rigidity and to improve the surgery procedure .The designed nail has the material strength similar to Richard nail, which as Young’s modular 170Gpa and Fatigue strength 433Mpa.
The results of finite element analysis showed that the peak stress for Richard Nail was located at screw holes and the area near to the fracture side. The highest stress concentration coefficient was 6.79. The peak stress for the new designed nail located neared the connected teeth-slot of 1st and 2nd segments, and screw holes. The highest stress concentration coefficient was 27.49 much higher than that of Richard nail. The stress distribution in both nails tended to a steady state after the fracture segment reached 33% recovery. The highest stress concentration coefficient reduced to 3.80 and 4.35 for Richard nail and new designed nail, respectively. The dynamic locking at distal end was not suited for the designed nail. The result of number of screw fastening effect showed that the most distal screw was not necessary to be fastened depended on the fracture location and quality of bone. The loosening of screw resulted in shear fracture of screw as well as strength reduction of implant-femur complex.
Although the initial strength of the design nail was not as good as Richard nail, it could provide much stimulation to provoke the bony remodeling phenomenon. The peak stress of the new designed nail after 33% of recovery was 20% higher than Richard nail, but this value is within the daily physiological limit.
第一章 緒論……………………………….. ……………………………..1
1-1 緣由與目的……………………………….. ………………………...1
1-2 股骨的解剖構造及常見股骨骨折…………………………………..3
1-3 鎖定式骨髓內釘簡介………………………………………………..5
1-4 文獻回顧……………………………….. …………………………...8
1-4-1 骨內釘設計………………………..…………………………8
1-4-2 臨床評估……………………………………………………15
1-4-3 有限元分析…………………………………………………18
1-4-4 材料試驗……………………………………………………23
第二章 方法……………………………….. ……………………………27
2-1 股骨幾何尺寸的量測………………………………………………27
2-2 有限元素模擬與分析…...…….……………………………………29
2-2-1 股骨模型的建構………...………………………………….29
2-2-2 骨釘模型構建………………………………………………37
2-2-3 有限元股骨、骨釘之整體模型……………………………………43
第三章 結果……………………………….. ……………………………56
3-1 X光片量測結果………………………………………………………..56
3-2 骨釘元素合理性的驗証, …………………………………………….57
3-3 有限元分析結果………………………………………………………58
3-3-1 股骨模型之驗証……………………………………………………58
3-3-2 新型骨釘套合深度的決定…………………………………………59
3-3-3 骨折位置及癒合程度交叉分析……………………………………60
3-3-4 動態鎖入之骨釘……………………………………………………66
3-3-5 螺絲數目對固定器強度的影響……………………………………67
3-3-6 模擬螺絲鬆脫………………………………………………………69
3-3-7 疲勞強度評估………………………………………………………70
第四章 討論……………………………….. …………………..………100
4-1 設計的探討………………………………………………………….100
4-2 有限元結果探討…………………………………………………….104
4-3 綜合探討…………………………………………………………….109
第五章 結論…………………………………………………………….110
圖目錄
圖 1-1 股骨的外觀…………………………………………………………3
圖 1-2 股骨骨折的分類……………………………………………………4
圖 1-3 四種不同近端螺絲的走向…………………………………………6
圖 1-4 前溯式骨釘入口點示意圖………………...……………………….7
圖 1-5 可斜鎖兩種走向的骨釘………………...………………………….8
圖 1-6 模組化的股骨近端固定套件………………………………………9
圖 1-7 軀幹部位去除一部份材料及可分兩段組裝的骨釘……...……….9
圖 1-8 可分三段組裝的骨釘………………………………………...…...10
圖 1-9 開放型斷面的骨釘……………………………….. ……………...10
圖 1-10 截面形狀因高度而不同的骨釘…………………………………11
圖 1-11 可調整軸向高度的骨釘…………………………………………11
圖 1-12 含有可降解部份的骨釘…………………………………………12
圖 1-13 遠端葉片展開固定的骨釘………………………………………12
圖 1-14 可撓式骨釘……...……………………….. ……………………..13
圖 1-15 自鎖型骨釘………………………………………………………13
圖 1-16 不需鎖入螺絲的骨釘……………………………………………14
圖 1-17 螺孔距骨折處少於5cm易發生骨釘破壞………………………15
圖 1-18 近端股骨模型……………………………………………………18
圖 1-19 兩種有限元模型與應變計位置…...…………………………….19
圖 1-20 完整股骨在步態周期13%所受的應力值………………………20
圖 1-21 骨折距遠端之近心螺絲距離與骨釘之最大應力的關係…....…21
圖 1-22 骨釘植入轉子下骨折之股骨模型……………………………....22
圖 1-23 股骨的材料試驗裝置……………………………………………23
圖 1-24 小獵犬脛骨內植入骨釘的情形…………………………………24
圖 1-25 股骨的材料試驗裝置……………………………………………24
圖 1-26 五孔與十二孔的骨釘…………………...……………………….25
圖 1-27 四點式彎曲裝置…………………………………………………26
圖 2-1 X光片量測示意圖………………………………………………...28
圖 2-2 輪廓之取得…………………………………..……………………30
圖 2-3 股骨幾何外型建立架構圖…………...…………………………...31
圖 2-4 解剖學的股骨分區………………………………………………..32
圖 2-5 股骨模型的楊氏係數……………………………………………..34
圖 2-6 Lengsfeld(1998)在實驗中所放置11個應變計的位置……...……35
圖 2-7 股骨在步態周期45%的應變運算值……………………………..36
圖 2-8 比較各種mesh方法的精確度……..……………………………..36
圖 2-9 AO universal nail外觀……………………………………………..38
圖 2-10 本研究所對照的一體成型骨釘……...………………………….39
圖 2-11 兩種徑向元素分割數目的模型...……………………………….40
圖 2-12 組合式骨釘示意圖………………………………………………41
圖 2-13 步態單腳站立期的各個階段……………………………………45
圖 2-14 本研究採用的二個作用力之施力點及方向……………………46
圖 2-15 植入骨釘後之股骨模型總覽……………………………………47
圖 2-16 本研究探討四種骨折位置………………………………………49
圖 2-17 骨折位置示意圖…………………………………………………50
圖 2-18 本研究的四種骨折位置…………………………………………51
圖 2-19 本研究模擬骨折之示意圖………………………………………51
圖 2-20 本研究架構……………………………….. …………………….55
圖 3-1 兩種鑽孔圓柱模型上的應力集中現象…………………………..81
圖 3-2 骨釘部位的代號圖示……………………………………………..81
圖 3-3 股骨模型驗証(軸向施力1,000 N)………………………………..82
圖 3-4 股骨模型驗証(外展施力1,000 N) ……..………………………..82
圖 3-5 股骨模型驗証(內收施力1,000 N) …..…………………………..83
圖 3-6 應變計量測與本研究模型主應力值散佈圖………...…………...83
圖 3-7 套合深度對各部位應力峰值較……..……………………………84
圖 3-8 套合深度對骨釘元件平均應力之比較…………………………..84
圖 3-9 一體成形骨釘手術後各部位峰值應力…………………………..85
圖 3-10 120mm處骨折時螺孔上應力集中的現象………………………86
圖 3-11 骨釘軀幹部位應力集中的的現象皆發生在骨折處附近的前內側
及後外側的元素.. …………………………………………………………86
圖 3-12 本研究中股骨的受力情形三視圖………………………………87
圖 3-13 骨折附近的骨釘元素之自由體圖…...………………………….87
圖 3-14 骨折位於80-85mm時,手術後骨釘軀幹的應力分佈情形……88
圖 3-15 骨折位於140-145mm時,手術後骨釘軀幹的應力分佈情形…88
圖 3-16 癒合程度33%時三處螺孔應力的比較…………………………89
圖 3-17 骨釘軀幹的應力分佈在兩種骨折癒合程度下極接近…………89
圖 3-18 0%癒合時各部位的骨折及 33%、66%平均應力的比較………90
圖 3-19 組合式骨釘分離體示意圖………...…………………………….91
圖 3-20 組合式骨釘手術後各部位的峰值應力…………………………92
圖 3-21 120-125mm骨折時,組合式骨釘的應力集中現象…………….92
圖 3-22 180-185mm骨折時,組合式骨釘的應力集中現象…………….93
圖 3-23 兩元件交界處以齒咬合…………………………………………93
圖 3-24 元件套合處呈受剪力……………………………………………94
圖 3-25 組合式骨釘套合處最大主應力大小及其走向…………………94
圖 3-26 組合式骨釘手術後各元件的應力平均值……………..………..95
圖 3-27 組合式骨釘元件上的應力集中現象較不明顯…………………95
圖 3-28 組合式骨釘,骨折處復原33%時各元件的峰值應力………….96
圖 3-29 骨折痊癒0%、33%、66%時各元件的峰值應力……………….96
圖 3-30 中段骨折0 % 癒合時,兩種骨釘在骨折處應變能的比較……97
圖 3-31 一體成形骨釘以不同鎖定方式之應力分佈比較………………97
圖 3-32 一體成形骨釘遠端鎖入一根螺絲的比較………………………98
圖 3-33 一體成形骨釘在中段骨折時螺絲的應力圖…………………....98
圖 3-34 第二根螺絲鬆脫而產生對應螺孔上y方向應力變化…………99
圖 3-35 鬆脫螺絲的主應力走向…………………………………………99
圖 4-1 組合式髓內釘插入裝置…………………………………………102
表目錄
表 2-1 以有限元決定新型骨釘的套合深度……………………………..42
表 2-2 本研究採取的元素及說明……………………………………….44
表 2-3 模擬步態週期13 %時施力的條件………………………………46
表 2-4 本研究之有限元模擬類型及對應之元素數目…………………..48
表 2-5 本研究探討的骨折及其位置……………………………………..50
表 3-1 X光片之的各項量測結果………………………………………...72
表 3-2 兩種圓柱有限元模型與理論值的結果…………………………..72
表 3-3 兩種鑽孔圓柱有限元模型的結果………………………………..72
表 3-4 兩種套合深度的組合式骨釘應力比較…………………………..73
表 3-5 一體成形骨釘手術後0%癒合各部位的應力……………………73
表 3-6 一體成形骨釘癒合程度33%時的各部位應力…...………..…….74
表 3-7 一體成形骨釘癒合程度66%時的各部位應力…..………………74
表 3-8 一體成形骨釘癒合程度各部位應力值之比較…………………..75
表 3-9 各元件相對於股骨幹的高度……………………………………..75
表 3-10 新型骨釘在0%癒合時各部位之應力峰值……………………..75
表 3-11 新型骨釘在0%癒合時各部位之應力平均值…………………..76
表 3-12 新型骨釘在骨折痊癒33 %時峰值應力及應力平均值………..76
表 3-13 新型骨釘在骨折痊癒66 %時之峰值應力及應力平均值……..77
表 3-14 組合式骨釘在三種癒合程度時的應力…..……………………..77
表 3-15 一體成型骨釘以動態鎖定的峰值應力及平均應力……………78
表 3-16 組合式骨釘以動態鎖定的峰值應力及平均應力………………78
表 3-17 一體成形骨釘的三種螺絲鎖入方式在中段骨折時的比較……78
表 3-18 組合式骨釘的三種螺絲鎖入方式在中段骨折時的比較………79
表 3-19 一體成形骨釘兩種鬆脫情形的比較……………………………79
表 3-20 組合式骨釘兩種鬆脫情形的比較………………………………79
表 3-21 壽命循環數. …………………………………………………80
1. Allguwer, M., Muller, M.E., Schneider, R.,and Willenegger, H.(1991) Manual of Internal Fixation, 3rd Ed. , Berlin, Heiderberg, New York, Springer-Verlag.
2. Bergmann, G., Garichen, F., and Rohlmann, A.(1993) Hip joint loading during walking and running, measured in two patients. Journal of Biomechanics. Vol. 26, 969-990.
3. Bramer, J.A., Barentsen, R.H., Elst, M.V., Langer, E.S., Patka, P., and Harrman, H.J.(1998) Representative assessment of long bone shaft biomechanical properties:an optimized testing method. Journal of Biomechanics. Vol. 31,741-745.
4. Blachut P.A., Obrien P.J., and Meek R.N.(1997) Interlocking intramedullary nailing with and without reaming for the treatment of closed fractures of the tibial shaft. The Journal of Bone and Joint Surgery. Vol. 79A, 5, 640-646.
5. Browner, Jupiter, Levine, and Trafton.(1998) Skeletal Trauma. Vol 2.
6. Bucholz, R. W., Ross, S. E., Lawrence, K. L.(1987) Fatigue fracture of the interlocking nail in the treatment of fractures of the distal part of the femoral shaft. The Journal of Bone and Joint Surgery. Vol. 69-A, 1391-1398.
7. Cody, D. D., Gross, G. J., Hou, F. J., Spencer, H. J., Goldstein, S. A., and Fyhrie, D. P.(1999) Femoral strength is better predicted by finite element models than QCT and DXA. Journal of Biomechanics. Vol. 32, 1013-1020.
8. Duda, G.N., Heller. M, Albinger, J., Schulz, O., Schneuder, E., and Claes, L.(1998) Influence of muscle forces on femoral strain distribution. Journal of Biomechanics, Vol. 31, 841-846.
9. Duwelius P.J., Schmidt A.H., and Rubinstein R.A.(1995) Nonreamed interlocked intramedullary tibial nailing on community's experience. Clinical Orthopaedics and Related Research. 315, 104-113.
10. Freeland et al.(1988) U.S. patent number:4,862,883
11. Gartland J.J.(1991) Fundamental of Orthopedics.
12. Grosse et al.(1995) U.S. patent number:5,573,536
13. Haas N., Schutz M., and Sudkamp N. et al.(1995) The new unreamed AO nails for the tibia and the femur. Acta Orthopaedica Belgica. 61 Suppl 1, 204-6.
14. Gimeno, M. S., Albareda, J. A., Vernet, J. M. C., Gallego, J. F., Fernandez, J., and Inigo, F. S.(1997) Biomechanical study of the Grosse-Kempf femoral nail. International Orthopaedics. Vol. 21, 115-118.
15. James et al.(1996) U.S. patent number:5,489,284
16. Keyak, J. H., Rossi, S. A., Jones, K. A., and Skinner, H. B.(1998) Prediction of femoral fracture load using automated finite element modeling. Journal of Biomechanics. Vol. 31, 125-133.
17. Kinast, C., Frigg, R., and Perren, S. M.(1990) Biomechanics of the interlocking nail. Archives of Orthopaedic and Trauma Surgery. Vol. 109, 197-204.
18. Klein, M. P. M., Rahn, B. A., Frigg, R., Kessler, S., and Perren, S. M.(1990) Reaming versus non-reaming in medullary nailing: Interference with cortical circulation of the canine tibia. Archives of Orthopaedic and Trauma Surgery. Vol. 109, 314-316.
19. Kummer et al.(1993)U.S. patent number:5,516,335
20. Lawes et al.(1995)U.S. patent number 5,454,813
21. Lacroix, H., Arwert, H., Snuders, C. J., and Fontune, W. P. J.(1995) Prevention of fracture at the distal locking site of the gamma nail. The Journal of Bone and Joint Surgery. Vol. 77-B, 274-276.
22. Lengsfeld, M., Schmitt, J., Alter, P., Kaminsky, J., Leppek, R.(1998) Comparison of geometry-based and CT voxel-based finite element modeling and experimental validation. Medical Engineering & Physics.Vol. 20, 515-522.
23. Marcus et al.(1986) U.S. patent number 4,622,959
24. Ochsner, P. E., Gosele, A., and Buess, P.(1990) The Value of intramedullary reaming in the treatment of chronic osteomyelitis of long bones. Archives of Orthopaedic and Trauma Surgery. Vol. 109, 341-347.
25. Pennig et al.(1994) U.S. patent number:5,484,438
26. Perry, J.(1992) Gait analysis.
27. Pong, C.W. Yang, S.W.(1999) Computer-Aided Design of New Adjustable-Modular Intramedullary Tibial Nails.
28. Prendergast, P.J., Taylor, D.(1990) Stress analysis of the proximal-medial femur after total hip replacement. Journal of Biomedical Engeering. Vol. 12, 379-382.
29. Raftopoulos et al.(1988) U.S. patent number:5,484,438
30. Richter et al.(1988) U.S. patent number:4,976,258
31. Rohen, J.W. et.al.(1983),Color atlas of anatomy.
32. Ruedi, T.,(1990) Intrameduallary nailing with interlocking. Archives of Orthopaedic and Trauma Surgery. Vol. 109, 317-320.
33. Stulpner, M. A., Reddy, B.D., Starke, G. R., and Spirakis, A.(1997) A three-dimensional finite analysis of adaptive remodelling in the proximal femur, Journal of Biomechanics, Vol. 30, 1063-1066.
34. Taylor, M.E., Tanner, K.E., Freeman, M.A.R., and Yettram, A.L.(1995) Stress and strain distribution within the intact femur: compression or bending?. Medical Engineering & Physics. Vol. 2, 122-131.
35. Viceconti, M., Bellingeri, L., Cristofolini, L., Toni, A.(1998) A comparative study on different method of automatic mesh generation of human femurs. Medical Engineering & Physics. Vol. 20, 1-10.
36. Vicenzi et al.(1990) U.S. patent number:5,281,225
37. Voor M.J., Verst D.A., and Mladsi S.W.(1997) Fatigue properties of a twelve-hole versus a five-hole Intramedullary supracondylar nail. Journal of Orthopaedic Trauma. 11, 2, 98-102.
38. Wang, C. J., Yettram, A. L., Yao, M. S., and Procter, P.(1998) Finite element analysis of a gamma nial within a fractured femur. Medical Engineering and Physics, Vol. 20, 677-683
39. Wu C.C. and Shih C.H.(1992) Biomechanical analysis of the mechanism of interlocking nail failure. Arch Orthop Trauma Surg. 111, 268-272.
40. Weinans, H., Buma, P., and Loon P. V.(1993) Lossening mechanisms around HA-coated intramedullary stems. Orthopaedic Research Society, 39th Annual Meeting, 245.
41. 魏寬毅, (1989) 鎖定式骨髓內釘用以治療股骨與徑骨複雜性骨折,台灣省立桃園醫院研報告
42. 林晉, (1998) Design and Clinical Application of Humeral Locked Nails. 台大醫
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top