跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佳容
研究生(外文):Jia-Rung Tsai
論文名稱:乙烯及乙烯抑制劑對洋桔梗切花瓶插壽命之影響
論文名稱(外文):Effect of ethylene and ethylene inhibitors on the vase life of Eustoma grandiflorum cv. ''Rosa Green'' cut flowers
指導教授:王自存
指導教授(外文):Tsu-Tsuen Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:98
中文關鍵詞:瓶插乙烯洋桔梗乙烯抑制劑
外文關鍵詞:ethylene inhibitorsEustoma grandiflorumvase life1-MCPcut flowersethylene
相關次數:
  • 被引用被引用:2
  • 點閱點閱:643
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本試驗以羅莎品系洋桔梗切花 (Eustoma grandiflorum cv. ‘Rosa Green’) 為試驗材料,研究乙烯及乙烯抑制劑處理對洋桔梗切花品質之影響。
以含有0.1-1 ppm乙烯之氣體流通處理洋桔梗切花,其中0.1 ppm乙烯處理對切花影響不明顯;乙烯濃度大於0.5 ppm時,會明顯加速切花的老化。隨處理濃度增加,瓶插壽命亦隨之下降,花苞開放率亦越低。半開及全開之花朵對乙烯則很敏感,0.1 ppm即會促進老化。切離的緊蕾花苞及初開之花苞則對外加乙烯不敏感,外加乙烯甚至有促進開張之效果。
以含有0.5 ppm乙烯之氣體流通處理洋桔梗切花12小時,就會縮短切花之瓶插壽命,隨處理時間增加,切花瓶插壽命越短。相同的乙烯濃度至少需要處理24小時以上,才會造成花苞開張率降低,處理48小時抑制效果更強。處理48小時亦會明顯的降低切花瓶插品質。花朵之發育成熟度越高,乙烯之處理時間越長,對花朵老化的影響亦越明顯。
0.1 ppm 1-MCP處理,可明顯延長經0.5 ppm乙烯處理48小時之洋桔梗切花之瓶插壽命及增進瓶插品質,1-MCP能明顯延遲半開期以上之小花老化,但對花苞之開張方面影響不大。對於未經乙烯處理之洋桔梗切花,1-MCP對延長瓶插壽命的效果不明顯。
乙烯抑制劑中能增進洋桔梗切花瓶插品質效果較佳者,分別為2 mM之AIB及0.1 mM 之STS,而AOA之效果不明顯。在未經0.5 ppm乙烯處理48小時之洋桔梗切花,施用乙烯抑制劑對洋桔梗切花延長瓶插壽命和增進觀賞品質之影響並不大。
以乙烯流通處理,乙烯濃度越高,越能促進花朵之乙烯生成率及呼吸率。以0.5 ppm乙烯處理24小時以上也有相同的影響。對於經0.5 ppm乙烯處理之洋桔梗花朵,1-MCP處理可降低花朵之乙烯生成及呼吸高峰。對於未經0.5 ppm乙烯處理48小時之洋桔梗切花,STS及1-MCP處理之乙烯生成反較其他處理高。洋桔梗切花之呼吸高峰通常在乙烯高峰出現前1-2天產生,且乙烯生成率及呼吸率越高者,花朵老化的速度亦越快。
This research studied the effects of ethylene and ethylene inhibitors on the vase life of cut flowers of ‘Rosa Green’ Eustoma [Eustoma grandiflorum (Raf.) Shinn.].

Eustoma cut flowers were treated with ethylene containing air continuously. While 0.1 ppm ethylene had very little effect on the opening of cut flower, ethylene concentration higher than 0.5 ppm accelerated the senescence of the cut flower. The vase life of the cut flower was reduced in parallel with the increase in ethylene concentration. Ethylene also lowered the opening ratio of the flower buds on the cut flower. Excised half-opened and full-opened florets were very sensitive to ethylene. Senescence of the florets was promoted by 0.1 ppm ethylene. On the other hand, excised tight buds and about-to-open buds showed little sensitivity toward ethylene. Exogenous ethylene seemed to promote the opening of flower buds.

Treating cut flowers with 0.5 ppm ethylene for 12 hours reduced vase life, and this effect increased with further increase in the duration of treatment up to 48 hours. It took at least 24 hours of the same ethylene treatment to result in the reduction of flower bud opening ratio, and further inhibition was observed for the 48 hours treatment. Ethylene effect was more pronounced in florets with more advanced maturity as well as in florets with longer exposure to ethylene.

Treating cut flowers with 0.1 ppm 1-methylcyclopropene(1-MCP), an ethylene action inhibitor, before exposing them to 0.5 ppm ethylene for 48 hours, effectively extended the vase life and improved flower quality. 1-MCP significantly delayed the senescence of excised half-open and full-open florets, but had little effect on the opening of excised buds. For cut flowers held under ethylene-free air, 1-MCP had little effect on vase life extension.

Among the ethylene inhibitors used, 2 mM α-aminoisobutyric acid(AIB) and 0.1 mM silver thiosulfate(STS) had better effect in extending the vase life of cut flower, while aminooxyacetic acid(AOA) showed no effect. Ethylene inhibitors were ineffective in extending vase life and in improving flower quality for flowers that had not been treated with 0.5 ppm ethylene for 48 hours.

When the cut flowers were held under ethylene containing air continuously, their ethylene production rate and respiration rate were enhanced. The higher the ethylene concentration, the greater the ethylene production and respiration rate. Treating cut flowers with 0.5 ppm ethylene for more than 24 hours also enhanced the ethylene production and respiration rate. This effect was blocked by pre-treating the cut flower with 1-MCP. For those flowers that were not exposed to 0.5ppm ethylene, STS and 1-MCP treatment enhanced their ethylene production rate. The respiration of the cut flower reached its peak 1-2 days ahead its ethylene production peak. Cut flowers that had higher ethylene production rate and respiration rate had faster rate of flower senescence.
目錄………… i
圖次………… iv
中文摘要…… vii
Summary..…… ix
壹、前言…… 1
貳、前人研究…3
一、乙烯對切花老化之影響………… 3
(一) 高等植物體內的乙烯合成路徑與調控…3
(二) 乙烯之作用機制……………………… 5
(三) 乙烯對切花老化的影響……………… 6
(四) 乙烯對洋桔梗切花老化之影響……… 9
二、使用乙烯抑制劑之相關研究……………… 10
(一) 乙烯合成抑制劑……………………… 10
(二) 乙烯作用抑制劑……………………… 11
三、洋桔梗概說………………………………… 14
四、洋桔梗切花之採後生理…………………… 16
(一) 洋桔梗小花開放過程及其老化之生理變化… 16
(二) 授粉對洋桔梗花朵老化的影響……………… 17
(三) 溫度及離水對洋桔梗切花品質的影響……… 18
五、洋桔梗切花之採後處理………………………………… 19
(一) 採收成熟度…………………………………………… 19
(二) 保鮮劑處理對洋桔梗切花瓶插壽命及品質的影響… 20
參、材料與方法……………………………………………… 23
一、試驗材料、儀器及藥品………………………………… 23
(一) 試驗材料……………………………………………… 23
(二) 試驗儀器及廠牌……………………………………… 23
(三) 試驗用藥及藥品配製………………………………… 25
二、試驗項目…………………………………………… 25
(一) 不同濃度乙烯氣體連續流通處理對洋桔梗切花品質
之影響………………………………………… 25
(二) 0.5 ppm乙烯氣體不同處理時間對洋桔梗切花品質
之影響………………………………………… 27
(三) 不同濃度乙烯抑制劑1-MCP處理對洋桔梗切花品
質之影響……………………………………… 28
(四) 不同乙烯抑制劑處理對洋桔梗切花品質之影響…29
三、試驗方法………………………………………………… 30
(一) 瓶插表現之評估…………………………………………… 30
(二) 乙烯生成率及呼吸率之測定……………………………… 31
四、試驗調查環境………………………………………… 31
肆、結果與討論………………………………………………… 33
一、不同濃度乙烯氣體連續流通處理對洋桔梗切花品質之影響 33
(一) 瓶插壽命及花苞開放率……………………………… 33
(二) 切花瓶插品質及花苞開放程度……………………… 35
(三) 切離之不同發育階段小花之開放…………………… 40
(四) 花朵之乙烯釋放量及呼吸率………………………… 43
二、0.5 ppm乙烯氣體處理不同時間對洋桔梗切花品質之影響 48
(一) 瓶插壽命及花苞開張率……………………………… 48
(二) 切花瓶插品質及花苞開放程度……………………… 49
(三) 切離之不同發育階段小花之開放…………………… 54
(四) 花朵之乙烯釋放量及呼吸率………………………… 58
三、乙烯抑制劑1-MCP處理對洋桔梗切花品質之影響…… 60
(一) 瓶插壽命及花苞開放率……………………………… 63
(二) 切花瓶插品質及花苞開放程度……………………… 63
(三) 切離之不同發育階段小花之開放………………… 66
(四) 花朵之乙烯釋放量及呼吸率………………………… 70
四、不同乙烯抑制劑處理對洋桔梗切花品質之影響…… 72
(一) 不同濃度AIB處理對切花瓶插品質之影響………… 72
(二) 不同濃度AOA處理對切花瓶插品質之影響………… 75
(三) 不同濃度STS處理對切花瓶插品質之影響………… 75
(四) 不同乙烯抑制劑對洋桔梗切花瓶插壽命之影響…… 75
(五) 不同乙烯抑制劑對洋桔梗切花瓶插品質之影響…… 79
(六) 乙烯抑制劑對洋桔梗花朵乙烯釋放量及呼吸率…… 82
伍、結論…………………………… ……………………… 87
參考文獻…………………………………………………… 90
王自存.2001. 園產品處理學講義. 第五章. 園產品處理上的乙烯問題. pp1-10.
林瑞松、謝美蓮、賴淑芬. 2001. 外加乙烯及乙烯抑制劑對玫瑰‘Grand Gala’及‘Golden Medal’切花生理之影響. 中國園藝. 47(3): 281-290.
李堂察、蔡榮哲. 1998. 洋桔梗切花採後生理及貯運方法之研究---採收成熟度對洋桔梗切花瓶插壽命和品質之影響. 園產品採收後處理技術改進計畫 八十六年度工作成果報告. 155-164pp.
高景輝. 1994. 植物荷爾蒙生理. 華香園出版社. 535pp.
黃肇家. 1998. 文心蘭切花之乙烯生成以及外加乙烯與去除花藥蓋對花朵品質之影響. 中華農業研究. 47(2): 125-134.
臺灣省政府農林廳. 臺灣農業年報. 2000.
盛心. 2002. 蔗糖與乙烯抑制劑對唐菖蒲及洋桔梗切花貯運後品質之影響. 國立臺灣大學園藝系研究所碩士論文. 146pp.
蔡智賢、郭銀港、鄭仔秀、李堂察. 1999. 洋桔梗花瓣老化過程中微細構造之變化. 中國園藝. 45: 305-316.
蔡智賢、劉家瑞、郭銀港、李堂察. 2000. 離水時間對洋桔梗切花瓶插壽命和品質之影響. 嘉義大學學報. 68: 1-11.
http://www.knownyou.com/
Beyer, E. M., JR. 1976. A potent inhibitor of ethylene action in plants. Plant Physiol. 58: 268-271.
Bichara, A. E. and J. van Staden. 1993. The effect of aminooxyacetic acid and cytokinin combinations on carnation flower longevity. Plant Growth Regul. 13: 161-167.
Bleecker, A. B., M. A. Estslle, C. Somerville, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science. 241: 1086-1089.
Bosma, T. and J. M. Dole. 2002. Postharvest handling of cut Campanula medium flowers. HortScience. 37: 954-958.
Bulfer, G., Y. Mor, M. S. Reid, and S. F. Yang. 1980. Changes in 1-aminocyclopropane-1-carboxylic-acid content of cut carnation flowers in relation to their senescence. Planta. 150: 439-442.
Cameron, A. C. and M. S. Reid. 2001. 1-MCP blocks ethylene-induced petal abscission of Pelargonium peltatum but the effect is transient. Postharvest Biol. Technol. 22: 169-177.
Celikel, F. G., L. L. Dodge, and M. S. Reid. 2002. Efficacy of 1-MCP (1-methylcyclopropene) and Promaline for extending the post-harvest life of Oriental lilies (Lilium × ‘Mona Lisa’ and ‘Stargazer’). Sci. Hortic. 93: 149-155.
Chang, C., S. F. Kwok, A. B. Bleecker, and E. M. Meyerowitz. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 262: 539-544.
De Stigter, H. C. M. 1980. Ethephon effects in cut ‘Sonia’ roses after pretreatment with silver thiosulfate. Acta Hortic. 113: 27-31.
Elgar, H. J., A. B. Woolf, and R. L. Bieleski. 1999. Ethylene production by three lily species and their response to ethylene exposure. Postharvest Biol. Technol. 16: 257-267.
Farnham, D. S., M. S. Reid, and D. W. Fujino. 1981. Shattering of snapdragons—effects of silver thiosulphate and ethephon. Acta Hortic. 113: 39-43.
Goh, C. J., A. H. Halevy, R. Engel, and A. M. Kofranek. 1985. Ethylene evolution and sensitivity in cut orchid flowers. Sci. Hortic. 26: 57-67.
Goszczynska, D. and R. M. Rudnicki. 1982. Long-term storage of carnations cut at the green-bud stage. Sci. Hortic. 17: 289-297.
Halevy, A. H. and A. M. Kofranek. 1984. Evaluation of lisianthus as a new flower crop. HortScience 19: 845-847.
Halevy, A. H. and S. Mayak. 1981. Senescence and post-harvest physiology of cut flowers. Part 2. Hort. Rev. 3: 51-143.
Han, K. and J. S. Lee. 1992. Effects of aminooxyacetic acid and silver thiosulfate on the fresh weight and the vase life of cut carnation (Dianthus caryophyllus L.). J. Korean. Soc. Hort. Sci. 33: 343-350.
Harbaugh, B. K., M. J. Bell, and R. Liang. 2000. Evaluation of forty-sevencultivars of lisianthus as cut flowers. HortTechnology. 10: 812-815.
Huang, K. L. and W. S. Chen. 2002. BA and sucrose increase vase life of cut Eustoma flowers. HortScience. 37: 547-549.
Ichimura, K. and M. Korenaga. 1998. Improvement of vase life and petal color expression in several cultivars of cut Eustoma flowers using sucrose with 8-hydroxyquinoline sulfate. Bull. Natl. Res. Inst. Veg. Ornam. Plant. Tea. 13: 31-39.
Ichimura, K. and R. Goto. 2000. Acceleration of senescence by pollination of cut ‘Asuka-no-nami’ Eustoma flowers. J. Japan. Soc. Hort. Sci. 69: 166-170.
Ichimura, K. and S. Ueyama. 1998. Effects of temperature and application of aluminum sulfate on the postharvest life of cut rose flowers. Bull. Natl. Res. Inst. Veg. Ornam. Plant. Tea. 13: 51-60.
Ichimura, K. and T. Hiraya, 1999. Effect of silver thiosulfate complex (STS) in combination with sucrose on the vase life of cut sweet pea flowers. J. Japan. Soc. Hort. Sci. 68: 23-27.
Ichimura, K., K. Kojima, and R. Goto. 1999. Effects of temperature, 8-hydroxyquinoline sulfate and sucrose on the vase life of cut rose flowers. Postharvest Biol. Technol. 15: 33-40.
Ichimura, K., M. Shimamura, and T. Hisamatsu. 1998. Role of eyhylene in senescence of cut Eustoma flowers. Postharvest Biol. Technol. 14: 193-198.
Jiang, W. B., S. Mayak, and A. H. Halevy. 1994. The mechanism involved in ethylene-enhanced ethylene synthesis in carnations. Plant Growth Regul. 14: 133-138.
Jiao, J., M. J. Tsujita, and B. Grodzinski. 1991. Influence of temperature on net CO2 exchange in roses. Can. J. Plant Sci. 71: 235-243.
Jones, M. L., E. S. Kim, and S. E. Newman. 2001. Role of ethylene and 1-MCP in flower development and petal abscission in zonal geranium. HortScience. 36: 1305-1309.
Kirchner J., O. Schmidt, J. Jung, and W. Rademacher. 1993. Effects of novel oxime ether derivates of aminooxyacetic acid on ethylene formation in leaves of oilseed rape and barley and on carnation senescence. Plant Growth Regul. 13: 41-46.
Larsen, P. B., E. N. Ashworth, M. L. Jones, and W. R. Woodson. 1995. Pollination-induced ethylene in carnation. Role of pollen tube growth and sexual compatibility. Plant Physiol. 108: 1405-1412.
Liao, L. J., Y. H. Lin, K. L. Huang, and W. S. Chen. 2001. Vase life of Eustoma grandiflorum as affected by aluminum sulfate. Bot. Bull. Acad. Sin. 42: 35-38.
Lukaszewska, A. J., J. Tonecki, E. J. Woltering, and N. Gorin. 1990. Effect of ethylene and silver thiosulfate on vase life of ‘Sonia’ roses. Gartenbauwissenschaft. 55: 118-121.
Maxie, E. C., D. S. Farnham, F. G. Mitchell, N. F. Sommer, R. A. Parson, R. G. Snyder, and H. L. Rae. 1973. Temperature and ethylene effects on cut flowers of carnation (Dianthus carophyllus L.). J. Am. Soc. Hortic. Sci. 98: 568-572.
Mayak, S., and A. H. Halevy. 1972. Interrelationships of ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol. 50: 341-346.
Mayak, S., Y. Vaadia, and D. R. Dilley. 1977. Regulation of senescence in carnation (Dianthus caryophyllus) by ethylene. Mode of action. Plant Physiol. 59: 591-593.
Muller, R., B. M. Stummann, E. C. Sisler, and M. Serek. 2001. Cultivar differences in regulation of ethylene production in miniature rose flowers (Rosa hybrida L.). Gartenbauwissenschaft. 66: 34-38.
Nicohols, R. 1966. Ethylene production during senescence of flowers. J. Hortic. Sci. 41: 279-290.
Nowak, J. and K. Mynett. 1985. The effect of sucrose, silver thiosulphate and 8-hydroxyquinoline citrate on the quality of Lilium inflorescences cut at the bud stage and stored at low temperature. Sci. Hortic. 25: 299-302.
O’Neill, S. D., J. A. Nadeau, X. S. Zhang, A. Q. Bui, and A. H. Halevy. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 5: 419-432.
Ohkawa, K., A. Kano, K. Kanematsu, and M. Korenaga. 1991. Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Sci. Hortic. 48: 171-176.
Pasian, C. C. and J. H. Lieth. 1989. Analysis of the response of net photosynthesis of rose leaves of varying ages to photosynthetically active radiation and temperature. J. Am. Soc. Hortic. Sci. 114: 581-586.
Porat, R., E. Shlomo, M. Serek, E. C. Sisler, and A. Borochov. 1995. 1-methylcyclopropene inhibits ethylene action in cut phlox flowers. Postharvest Biol. Technol. 6: 313-319.
Reid, M. S. 1989. The role of ethylene in flower senescence. Acta Hortic. 261: 157-169.
Reid, M. S. 2002. Ethylene in postharvest technology. In Postharvest technology of horticultural crops. A. A. Kader ed. University of California Agriculture and Natural Resources Publication 3311. Chapter 16. pp149-162.
Reid, M. S., L. L. Dodge, Y. Mor, and R. Y. Evans. 1989. Effects of ethylene on rose opening. Acta Hortic. 261: 215-220.
Reid, M. S., R. Y. Evans, L. L. Dodge, and Y. Mor. 1989. Ethylene and silver thiosulfate influence opening of cut rose flowers. J. Am. Soc. Hortic. Sci. 114: 436-440.
Satoh, S. and Y. Esashi. 1980. α-aminoisobutyric acid: a probable competitive inhibitor of conversion of 1-aminocyclopropane-1 -carboxylic acid to ethylene. Plant Cell Physiol. 21: 939-949.
Serek, M. and E. C. Sisler. 2001. Efficacy of inhibitors of ethylene binding in improvement of the postharvest characteristics of potted flowering plants. Postharvest Biol. Technol. 23: 161-166.
Serek, M., E. C. Sisler, and M. S. Reid. 1995. Effects of 1-MCP on the vase life and ethylene response of cut flowerw. Plant Growth Regul. 16: 93-97.
Serek, M., G. Tamari, E. C. Sisler, and A. Borochov. 1995. Inhibition of ethylene-induced cellular senescence symptoms by 1-methylcyclopropene, a new inhibitor of ethylene action. Physiol. Plant. 94: 229-232.
Shillo, R., Y. Mor, and A. H. Halevy. 1980. Prevention of flower drop in cut sweet peas and delphiniums. Hassade. 61: 274-276.
Shimamura, M., A. Ito, K. Suto, H. Okabayashi, and K. Ichimura. 1997. Effect of α-aminoisobutyric acid and sucrose on the case life of hybrid Limonium. Postharvest Biol. Technol. 12: 247-253.
Sisler, E. C. and M. Serek. 1997. Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol. Plant. 100: 577-582.
Sisler, E. C., E. Dupille, and M. Serek. 1996. Effect of 1-methylcyclopropene on ethylene binding and ethylene action on cut carnations. Plant Growth Regul. 18: 79-86.
Spikman, G. 1989. Development and ethylene production of buds and florets of cut freesia inflorescences as influenced by silver thiosulfate aminoethoxyvinylglycine and sucrose. Sci. Hortic. 39: 73-82.
Stimart, D. P., D. J. Brown, and T. Solomos. 1983. Development of flowers and changes in carbon dioxide, ethylene, and various sugars of cut Zinnia elegans. J. Am. Soc. Hortic. Sci. 108: 651-655.
Takashi, O., I. Hiroshi, and T. Yamaguchi. 1998. Effect of calcium nitrate addition to alpha-aminoisobutyric acid (AIB) on the prolongation of the vase life of cut carnation flowers. J. Japan. Soc. Hort. Sci. 67: 198-203.
Whitehead, C. S., A. H. Halevy, and M. S. Reid. 1984. Roles of ethylene and 1-aminocyclopropane-1-carboxylic acid in pollination and wound-induced senescence of Petunia hybrida flowers. Physiol. Plant. 61: 643-648.
Woltering, E. J. and E. P. Sterling. 1986. Design for studies on ethylene sensitivity and ethylene production of ornamental products. Acta Hortic. 181: 483-488.
Woltering, E. J., H. Harkema, and P. C. H. Hollman. 1987. Aminooxyacetic acid: Analysis and toxicology. Acta Hortic. 216: 273-280.
Woltering, E. J. and W. G. van Doorn. 1988. Role of ethylene in senescence of petals--morphological and taxonomical relationships. J. Exp. Bot. 39: 1605-1616.
Woodson, W. R. and K. A. Lawton. 1988. Ethylene-induced gene expression in carnation petals. Relationship to autocatalytic ethylene production and senescence. Plant Physiol. 87: 498-503.
Yang, S. F. 1985. Biosynthesis and action of ethylene. HortScience. 20: 41-45.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top