跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣亞帆
研究生(外文):Ya-Fan Chiang
論文名稱:攝食氧化炸油對胰臟β細胞胰島素分泌影響
論文名稱(外文):Effect of Oxidized Frying Oil Consumption on Insulin Secretion by Pancreatic β-cells
指導教授:趙蓓敏
指導教授(外文):Pei-Min Chao
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:109
中文關鍵詞:氧化炸油氧化壓力蘭氏小島胰島素葡萄糖刺激胰島素分泌
外文關鍵詞:Oxidized frying oilOxidative stressPancreatic isletInsulinGlucose-stimulated insulin secretion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
油炸食物因具有特殊之色、香、味,而廣受人們喜愛,但攝食炸油的安全性也備受關注。從我們過去的研究發現,攝食炸油會影響體內脂質與葡萄糖代謝,除了活化 peroxisome proliferator-activated receptor α ,促進脂肪酸氧化,也觀察到炸油飲食導致大小鼠葡萄糖不耐(glucose intolerance),在口服葡萄糖耐受性試驗時可見血清胰島素與 C-peptide 濃度降低。猜測炸油導致葡萄糖不耐之原因可能為胰臟小島受到氧化壓力或發炎傷害,導致胰島素分泌不足。本研究目的在探討炸油降低胰島素分泌原因及機制,為瞭解炸油效應是否與促進胰臟小島過氧化壓力有關,實驗一將 C57BL/6J mice 分為三組,分別餵以正常含量新鮮油(4 %;LF)、20 %新鮮油(HF)及20 %炸油(HO)飼料,待2個月炸油組出現 glucose intolerance 及 hypoinsulinemia 現象後,分離胰臟小島進行體外糖水培養實驗觀察胰島素分泌,證實 HO 組不論第一期還是第二期的葡萄糖刺激胰島素分泌(GSIS)皆降低(P<0.05 及 P<0.01),而 HO 組胰臟小島的 total insulin content 雖和 HF 組相當,但與 LF 組相比仍有顯著較低(P<0.01)。在氧化壓力方面, HO 組的肝臟相較它組有顯著較低的維生素 E (P<0.001)及顯著較高的 TBARS (P<0.0001),但 glutathione (GSH)與 LF 組相比則有顯著較高(P=0.01)。HO組不只肝臟,在胰臟小島亦可觀察到高氧化壓力:HO 組的胰臟小島相較它組有較高的 lipid hydroperoxide 及顯著較低的 glutathione peroxidase-1(P<0.05)與 total antioxidant capacity (HO vs. LF, P<0.05)。另外,HO 組的胰臟維生素 E 含量也顯著的低於 HF 組(P<0.0001)。在發炎因子方面, HO 和 HF 組胰臟小島的 TNF-α 含量並無顯著差異。利用 Western blot 證實,HO 組其磷酸化的 c-Jun NH2-terminal kinase (JNK)有大於 LF 與 HF 組傾向 (p=0.06),而 Pancreatic duodenal homeobox-1 (PDX-1) 的表現量則為 HO 組低於 LF 及 HF 組(p=0.055)。在 mRNA 方面, HO 組除了 UCP2 的表現量與 HF 組一樣皆顯著高於 LF 組外,其他 PDX-1 的下游基因 mRNA 表現量(preproinsulin-1 及 2、glucokinase 及 GLUT2)則皆無差異。在實驗二則進一步觀察,炸油所導致的胰島素分泌減少是否可藉由體外或體內補充維生素 E 來克服。在體外補充的實驗,將 LF、HF 和 HO 三組胰臟小島分離後與 100 μM 劑量維生素 E 培養,發現除 LF 外,體外補充維生素 E 並不能改善其受損的 GSIS 。在體內補充的實驗,將 C57BL/6J mice 分為四組,HO、HF、HO+E 及 HF+E ,後兩組飼料為添加十倍 AIN-76 建議量之維生素 E ,發現在給予飲食補充維生素 E 後, HO+E 組其肝臟及胰臟內維生素 E 含量有顯著增加(P<0.0001),而炸油所致的 hypoinsulinemia 也被克服(P<0.005) ,並有改善 GSIS 的趨勢。總和以上所知,炸油飲食導致的葡萄糖不耐及低胰島素血症與胰臟小島過氧化傷害有關,使得 GSIS 受損,而口服補充維生素E可部分恢復 GSIS 。
Being crisp and aromatic, fried foods are popular with consumers world-wide while the safety concerns about the ingestion of oxidized frying oil (OFO) are still raised. We had previously shown that OFO ingestion can influence lipid and glucose metabolism. Dietary OFO increases fatty acids oxidation in liver by activating peroxisome proliferator-activated receptor α. However, accompanied with TG reductions, glucose intolerance is observed in OFO-fed rodents. Since the serum levels of insulin and C-peptide in oral glucose tolerance test were both decreased in OFO-fed mice, we speculated the reduced ability to secrete insulin caused by dietary OFO is associated with oxidative damages and/or inflammatory responses of the pancreas. Accordingly, this study was aimed at investigating the underlying mechanisms of insulin secretion impairment associated with OFO consumption. To test the involvement of oxidative stress in pancreatic islets, Experiment I was conducted by dividing C57BL/6J mice into LF, HF and HO groups which received a basal diet containing 5 g/100 g fresh soybean oil or high fat diets containing 20 g/100 g of fresh soybean oil or OFO respectively. When glucose intolerance and hypoinsulinemia were observed in HO group (2 months of feeding), all mice were killed and their pancreatic islets were isolated. Results showed glucose stimulated insulin secretion (GSIS) of islets, both in the first phase and second phase, was significantly reduced in HO group compared with the other two groups (P<0.05),. The total insulin content in islets of HO group was not different from that of HF group, but was significantly lower than that of LF group (P<0.01). For oxidative indexes, livers vitamin E and TBARS in HO group were significantly lower (P<0.001) and higher (P<0.0001), respectively, than those of other groups. A higher oxidative stress was observed not only in livers, but also in pancreatic islets of HO group. Compared to HF or LF groups, the lipid hydroperoxide was increased, and the glutathione peroxidase-1 activity and total antioxidant capacity (HO vs. LF, P<0.05) was decreased in islets of HO groups. Moreover, the vitamin E levels in the pancreas of HO group were significantly lower than that of HF group (P<0.0001). For inflammatory indexes, there was no significant difference between HO and HF groups in islets of TNF-α levels. The immunoblotting showed, the protein levels of phosphorylated c-Jun NH2-terminal kinase (JNK) tended to be higher (p=0.06), and the protein levels of pancreatic duodenal homeobox-1 (PDX-1) significantly lowered in HO group compared with the other two groups (p=0.055). Using qRT-PCR, the mRNA levels of UCP2 in islets of HO and HF groups were significantly higher than those of LF group, while no difference in mRNA levels of PDX-1 downstream genes (preproinsulin-1 and 2、glucokinase and GLUT2) was observed between groups. In Experiment II, we tried to investigate whether the impairment of insulin secretion by pancreatic islets associated with dietary OFO consumption could be reversed by supplementation of vitamin E in vitro or in vivo. For the in vitro supplementation study, islets separated from LF, HF and HO groups were incubated with or without the addition of vitamin E (100 μM). The improvement of GSIS due to vitamin E supplementation was only observed in LF group, but not in HF and HO group. In in vivo supplementation study, mice were separated into HO, HF, HO+E and HF+E groups, with a dietary supplementation of 10-fold higher AIN-76 recommended vitamin E for the latter two groups. Results showed that the vitamin E supplementation not only corrected the vitamin E status in livers and pancreas of OFO-treated mice (P<0.0001), but also alleviated the reduction of serum levels of insulin, and GSIS caused by dietary OFO. In conclusion, this study provided evidences that dietary OFO-induced glucose intolerance and hypoinsulinemia was associated with oxidative damages of pancreatic islets, thus leading to GSIS impairment. Oral supplementation of vitamin E can partly overcome the OFO mediated GSIS impairment.
縮寫對照表 I
中文摘要 II
英文摘要 IV

第一章 前言 1
第二章 文獻探討 3
一、氧化炸油 3
二、胰臟胰島素分泌 8
第三章 材料與方法 20
第一節 實驗設計與假說 20
第二節 實驗一 材料方法 23
一、氧化炸油的製備 23
二、油脂品質分析 24
三、試驗飼料配製 26
四、動物飼養 28
五、口服葡萄糖耐受試驗 29
六、動物犧牲與樣品收集 31
七、血糖分析 31
八、禁食血清胰島素含量測定 32
九、分離胰臟小島 34
十、葡萄糖刺激胰島素分泌試驗 (GSIS) 35
十一、Islet 總胰島素含量 36
十二、抗氧化與過氧化物質測定 36
十三、蛋白質定量 46
十四、西方墨點法 (Western blot) 46
十五、統計分析 51
第三節 實驗二 材料方法 52
一、前言 52
二、試驗飼料配製 52
三、動物飼養 54
四、肝臟脂質萃取 55
五、統計分析 56
第四章 結果 57
第五章 討論 87
第六章 結論 96
第七章 參考文獻 98
1. Despres JP. Intra-abdominal obesity: An untreated risk factor for type 2 diabetes and cardiovascular disease. J Endocrinol Invest. 2006;29(3 Suppl):77-82.
2. Artman NR. The chemical and biological properties of heated and oxidized fats. Adv Lipid Res. 1969;7:245-330.
3. Huang CJ, Cheung NS, Lu VR. Effects of deteriorated frying oil and dietary protein levels on liver microsomal enzymes in rats. J. Am. Oil Chem. Soc. 1988;65; 1796-1803.
4. Liu JF, Huang CJ. Tissue alpha-tocopherol retention in male rats is compromised by feeding diets containing oxidized frying oil. J Nutr. 1995 Dec;125(12):3071-80.
5. 湯雅理. 炸油餵食對老鼠肝中維生素A含量及肝微粒體 Cytochrome P-450 酵素活性之影響 [dissertation]. 國立台灣大學農業化學研究所碩士論文;1994
6. Chao PM, Chao CY, Lin FJ, Huang C. Oxidized frying oil up-regulates hepatic acyl-CoA oxidase and cytochrome P450 4 A1 genes in rats and activates PPARalpha. J Nutr. 2001 Dec;131(12):3166-74.
7. Chao PM, Hsu SC, Lin FJ, Li YJ, Huang CJ. The up-regulation of hepatic acyl-CoA oxidase and cytochrome P450 4A1 mRNA expression by dietary oxidized frying oil is comparable between male and female rats. Lipids. 2004 Mar;39(3):233-8.
8. Chao PM, Yang MF, Tseng YN, Chang KM, Lu KS, Huang CJ. Peroxisome proliferation in liver of rats fed oxidized frying oil. J Nutr Sci Vitaminol (Tokyo). 2005 Oct;51(5):361-8.
9. 趙蓓敏. 氧化炸油活化 PPARα 之探討 [dissertation]. 國立台灣大學農業化學研究所博士論文;2002
10. Koch A, Konig B, Spielmann J, Leitner A, Stangl GI, Eder K. Thermally oxidized oil increases the expression of insulin-induced genes and inhibits activation of sterol regulatory element-binding protein-2 in rat liver. J Nutr. 2007 Sep;137(9):2018-23.
11. Chao PM, Huang HL, Liao CH, Huang ST, Huang CJ. A high oxidised frying oil content diet is less adipogenic, but induces glucose intolerance in rodents. Br J Nutr. 2007 Jul;98(1):63-71.
12. Liao CH, Shaw HM, Chao PM. Impairment of glucose metabolism in mice induced by dietary oxidized frying oil is different from that induced by conjugated linoleic acid. Nutrition. 2008 Jul-Aug;24(7-8):744-52.
13. Grankvist K, Marklund SL, Taljedal IB. CuZn-superoxide dismutase, mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J. 1981 Nov 1;199(2):393-8.
14. Ceriello A. Oxidative stress and glycemic regulation. Metabolism. 2000 Feb;49(2 Suppl 1):27-9.
15. Liu JF, Huang CJ. Dietary oxidized frying oil enhances tissue alpha-tocopherol depletion and radioisotope tracer excretion in vitamin E-deficient rats. J Nutr. 1996 Sep;126(9):2227-35.
16. Brandsch C, Eder K. Effects of peroxidation products in thermoxidised dietary oil in female rats during rearing, pregnancy and lactation on their reproductive performance and the antioxidative status of their offspring. Br J Nutr. 2004 Aug;92(2):267-75.
17. 湯雅理. 飲食炸油與腎臟前列腺素 E2 合成 [dissertation]. 國立台灣大學農業化學研究所博士論文;2000
18. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 1995 Jun;15(6):3012-22.
19. Sulzle A, Hirche F, Eder K. Thermally oxidized dietary fat upregulates the expression of target genes of PPAR alpha in rat liver. J Nutr. 2004 Jun;134(6):1375-83.
20. Luci S, Konig B, Giemsa B, Huber S, Hause G, Kluge H, Stangl GI, Eder K. Feeding of a deep-fried fat causes PPARalpha activation in the liver of pigs as a non-proliferating species. Br J Nutr. 2007 May;97(5):872-82.
21. 黃曉婷. 炸油對大鼠腹部脂質堆積、脂肪細胞分化及胰島素敏感性研究[dissertation]. 中國醫藥大學營養所碩士論文;2005
22. Tsujinaka K, Nakamura T, Maegawa H, Fujimiya M, Nishio Y, Kudo M, Kashiwagi A. Diet high in lipid hydroperoxide by vitamin E deficiency induces insulin resistance and impaired insulin secretion in normal rats. Diabetes Res Clin Pract. 2005 Feb;67(2):99-109.
23. Rutter GA. Nutrient-secretion coupling in the pancreatic islet beta-cell: Recent advances. Mol Aspects Med. 2001 Dec;22(6):247-84.
24. Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20-26;311(5983):271-3.
25. Straub SG, Sharp GW. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev. 2002 Nov-Dec;18(6):451-63.
26. Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P. Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest. 2003 Sep;33(9):742-50.
27. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001 Dec 13;414(6865):799-806.
28. Kahn CR, Vicent D, Doria A. Genetics of non-insulin-dependent (type-II) diabetes mellitus. Annu Rev Med. 1996;47:509-31.
29. Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 1993 Nov;12(11):4251-9.
30. Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy MR. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol. 1993 Oct;7(10):1275-83.
31. Bretherton-Watt D, Gore N, Boam DS. Insulin upstream factor 1 and a novel ubiquitous factor bind to the human islet amyloid polypeptide/amylin gene promoter. Biochem J. 1996 Jan 15;313 ( Pt 2)(Pt 2):495-502.
32. Miller CP, McGehee RE,Jr, Habener JF. IDX-1: A new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 1994 Mar 1;13(5):1145-56.
33. Marshak S, Totary H, Cerasi E, Melloul D. Purification of the beta-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15057-62.
34. Ashizawa S, Brunicardi FC, Wang XP. PDX-1 and the pancreas. Pancreas. 2004 Mar;28(2):109-20.
35. Waeber G, Thompson N, Nicod P, Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol. 1996 Nov;10(11):1327-34.
36. Watada H, Kajimoto Y, Miyagawa J, Hanafusa T, Hamaguchi K, Matsuoka T, Yamamoto K, Matsuzawa Y, Kawamori R, Yamasaki Y. PDX-1 induces insulin and glucokinase gene expressions in alphaTC1 clone 6 cells in the presence of betacellulin. Diabetes. 1996 Dec;45(12):1826-31.
37. Watada H, Kajimoto Y, Kaneto H, Matsuoka T, Fujitani Y, Miyazaki J, Yamasaki Y. Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun. 1996 Dec 24;229(3):746-51.
38. Matsuoka TA, Kaneto H, Stein R, Miyatsuka T, Kawamori D, Henderson E, Kojima I, Matsuhisa M, Hori M, Yamasaki Y. MafA regulates expression of genes important to islet beta-cell function. Mol Endocrinol. 2007 Nov;21(11):2764-74.
39. Song YD, Lee EJ, Yashar P, Pfaff LE, Kim SY, Jameson JL. Islet cell differentiation in liver by combinatorial expression of transcription factors neurogenin-3, BETA2, and RIPE3b1. Biochem Biophys Res Commun. 2007 Mar 9;354(2):334-9.
40. Ohneda K, Mirmira RG, Wang J, Johnson JD, German MS. The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol Cell Biol. 2000 Feb;20(3):900-11.
41. Andrali SS, Sampley ML, Vanderford NL, Ozcan S. Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J. 2008 Oct 1;415(1):1-10.
42. Wang X, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology. 2001 May;142(5):1820-7.
43. Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia. 1999 Jul;42(7):856-64.
44. Gao Y, Miyazaki J, Hart GW. The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys. 2003 Jul 15;415(2):155-63.
45. Mosley AL, Ozcan S. The pancreatic duodenal homeobox-1 protein (pdx-1) interacts with histone deacetylases hdac-1 and hdac-2 on low levels of glucose. J Biol Chem. 2004 Dec 24;279(52):54241-7.
46. Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest. 2003 Dec;112(12):1831-42.
47. Paolisso G, Giugliano D. Oxidative stress and insulin action: Is there a relationship? Diabetologia. 1996 Mar;39(3):357-63.
48. Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999 Sep 24;274(39):27905-13.
49. Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes. 1999 Dec;48(12):2398-406.
50. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun. 2003 Jan 3;300(1):216-22.
51. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004 Feb 12;350(7):664-71.
52. 廖純慧. 炸油飲食導致葡萄糖不耐之研究 [dissertation]. 中國醫藥大學營養所碩士論文;2007
53. Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem. 2002 Aug 16;277(33):30010-8.
54. Kajimoto Y, Kaneto H. Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci. 2004 Apr;1011:168-76.
55. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord. 2003 Dec;27 Suppl 3:S53-5.
56. Kawamori D, Kajimoto Y, Kaneto H, Umayahara Y, Fujitani Y, Miyatsuka T, Watada H, Leibiger IB, Yamasaki Y, Hori M. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-jun NH(2)-terminal kinase. Diabetes. 2003 Dec;52(12):2896-904.
57. Andrali SS, Sampley ML, Vanderford NL, Ozcan S. Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J. 2008 Oct 1;415(1):1-10.
58. Kashemsant N, Chan CB. Impact of uncoupling protein-2 overexpression on proinsulin processing. J Mol Endocrinol. 2006 Dec;37(3):517-26.
59. Chan CB, Saleh MC, Koshkin V, Wheeler MB. Uncoupling protein 2 and islet function. Diabetes. 2004 Feb;53 Suppl 1:S136-42.
60. Hui H, Dotta F, Di Mario U, Perfetti R. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol. 2004 Aug;200(2):177-200.
61. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997 Oct 13;416(1):15-8.
62. Votyakova TV, Reynolds IJ. DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2001 Oct;79(2):266-77.
63. Zhang X, Li L, Prabhakaran K, Zhang L, Leavesley HB, Borowitz JL, Isom GE. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPARalpha activation and oxidative stress. Toxicol Appl Pharmacol. 2007 Aug 15;223(1):10-9.
64. Affourtit C, Brand MD. On the role of uncoupling protein-2 in pancreatic beta cells. Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):973-9.
65. Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999 Sep 24;274(39):27905-13.
66. Campbell SC, Aldibbiat A, Marriott CE, Landy C, Ali T, Ferris WF, Butler CS, Shaw JA, Macfarlane WM. Selenium stimulates pancreatic beta-cell gene expression and enhances islet function. FEBS Lett. 2008 Jun 25;582(15):2333-7.
67. Wang XD, Vatamaniuk MZ, Wang SK, Roneker CA, Simmons RA, Lei XG. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia. 2008 Aug;51(8):1515-24.
68. Kobayashi H, Matsuda M, Fukuhara A, Komuro R, Shimomura I. Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. Am J Physiol Endocrinol Metab. 2009 Jun;296(6):E1326-34.
69. 蔡文齡. 膳食蛋白質、維生素 E 與包種茶對攝食劣化油脂的老鼠體脂質過氧化的影響 [dissertation]. 台大農化所碩士論文;1988
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊