跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳玉琪
研究生(外文):Yu-Chi Chen
論文名稱:甘藷Ipomoelin基因之定性及調控
論文名稱(外文):Characterization and Regulation of Ipomoelin Gene from Sweet Potato
指導教授:鄭石通鄭石通引用關係
指導教授(外文):Shih-Tong Jeng
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:143
中文關鍵詞:甘藷傷害誘導鈣離子乙烯蛋白質磷酸化凝血試驗凝集素
外文關鍵詞:IpomoelinSweet potatoWound-inducibleCalcium ionEthyleneProtein phosphorylationHemagglutinationLectin
相關次數:
  • 被引用被引用:2
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以台農57號甘藷為實驗材料,建構甘藷受傷葉片之cDNA基因庫,以傷害誘導之DNA片段為探針,選殖其cDNA全長,並經基因序列之分析而得知此傷害誘導DNA為Ipomoelin (IPO) 基因,並且其氨基酸序列與凝集素(lectin)具有高度相似性。IPO基因全長為720個鹼基對,可轉譯成含154個胺基酸之蛋白質,利用南方氏墨點法可得知台農57號甘藷中具有兩個IPO基因。然而IPO基因在植物中並非普遍存在的,阿拉伯芥、菸草、蕃茄之受傷葉片中均無法測得IPO基因之表現,即使在甘藷中不同的品系其IPO基因表現量亦不相同。本論文中更進一步製備IPO蛋白質之抗體,以西方墨點法得知IPO蛋白質在甘藷葉片受傷後一天即會開始累積,並在七天後累積量大增。
在IPO蛋白質的功能分析實驗中,利用大腸桿菌大量表現IPO蛋白質,將此經純化之蛋白質以不同稀釋濃度塗抹於桑葉表面,餵食予二齡幼蠶,經過觀察發現幼蠶食用塗抹IPO蛋白質的桑葉會有體重減輕及存活率降低的現象,並且此現象與IPO蛋白質濃度相關,此結果證明IPO蛋白質為防禦相關蛋白質之一。在血液凝集試驗中發現IPO蛋白質可將人類紅血球凝集,並且此凝集作用可被某些醣類抑制,此結果更進一步證實IPO為醣類結合蛋白質之一。
IPO基因在甘藷中的訊息傳導途徑亦為本論文之重要課題, IPO基因在傷害之本片葉及系統葉片中均會被誘導表現,此外,茉莉酸甲酯 (MeJA)、多聚半乳糖醛酸 (PGA)、及脫乙醯殼多糖 (CHI) 等物質亦會誘發IPO基因之表現。甘藷受物理性傷害而誘導表現IPO基因經北方墨點法及共軛焦顯微鏡對鈣離子的觀察得知,其訊息傳遞途徑依序為鈣離子進入細胞、胞器內鈣離子釋放、甲基化茉莉酸生成、去磷酸化蛋白質亦參與其中之調控。然而在IPO基因受PGA誘導的訊息傳導途徑中,則發現蛋白質激脢也參與誘導IPO基因的表現。乙烯為植物荷爾蒙之一,並可誘發甘藷葉片IPO基因的大量表現,其訊息傳導途徑為乙烯促使鈣離子經由細胞膜上對鈣離子高親和性孔徑蛋白質進入細胞,引發細胞內胞器大量釋放鈣離子至細胞質,而後經由去磷酸化蛋白質、過氧化氫、蛋白質激脢MAPK等傳導信息,進而啟動IPO基因之表現。
In order to investigate the functions and applications of wound inducible genes in the plant defense response, sweet potato (Ipomoea batatas cv. Tainung 57) was used as the experimental materials in this study. In the previous study from our laboratory indicated that ipomoelin (IPO) gene from sweet potato was wound- and methyl jasmonate (MeJA)-inducible, but the function and signal transduction of IPO protein was not clear. To understand the basic traits of IPO gene, the full-length cDNA of IPO gene was obtained by screening the cDNA library of the wounded sweet potato leaves. The full-length cDNA of IPO gene contains 720 base pairs, and encodes 154 amino acids. Also, the amino acid sequence of IPO protein showed high homology with those of lectin proteins. Southern blotting assay demonstrated that IPO gene existed two copies within sweet potato. However, IPO gene induced by wounding was only present in sweet potato of Tainung 57 and Tainung 25, but not in Taoyuan 1 or Taoyuan 2. Moreover, IPO gene was not expressed in the wounded leaves of Arabidopsis, tobacco, and tomato. The result of Western blotting assay indicated that the IPO protein was accumulated in the day one after the treatment of wounding, and the maximum accumulation was in the day seven after wounding.
To study the function of IPO protein, His-IPO fusion protein was expressed in E.coli BL21(DE3), and two-week-old silkworms were fed the mulberry leaves smeared with His-IPO protein. The feeding experiment showed that His-IPO fusion protein reduces silkworm growth and survival rates. Additionally, the reduction of silkworm growth and survival rates was dosage-dependent. This result demonstrated that IPO protein was one of the defense-related proteins. Furthermore, His-IPO fusion protein agglutinates human blood and this agglutination was inhibited by some carbohydrates. This result further demonstrated that IPO protein was a carbohydrate-binding protein.
The regulation of IPO gene in sweet potato was also an important project in this study. IPO gene was induced in both local and systemic leaves of sweet potato after wounding. In addition, IPO gene was induced by MeJA, polygalacturonic acid (PGA), and chitosan (CHI) in sweet potato. Moreover, several factors, including calcium ion influx, calcium release from organelles, biosynthesis of MeJA, and protein dephosphorylation, were involved in the expression of wound-inducible IPO gene, and analyzed by Northern blotting assay and confocal scanning microscope. However, when IPO gene was induced by PGA, protein kinase was involved in the signal transduction pathway. On the other hand, ethylene, a plant hormone, induced large expression of the IPO gene in sweet potato leaves. The signals involved in the ethylene-induced IPO gene expression were via calcium ions influx through high affinity calcium channels into cytoplasma, calcium ions released from organelles, and the activation of protein phosphatase, hydrogen peroxide, and MAPK to promote the expression of IPO gene.
In this study, the DNA of IPO gene was cloned and the function of IPO protein was demonstrated to be involved in the plant defense response. Moreover, the regulation of IPO gene was also studied. These data help us understand how the stress-related IPO gene regulated by environmental factors, and further elucidate the complex regulation of gene expression with plants.
Abbreviations.................................................1
Chapter one:
Literature Review.............................................3
Abstract......................................................4
References...................................................11
Figures......................................................17
Chapter two:
Cloning and characterization of the wound-inducible and carbohydrate-binding protein ipomoelin from sweet potato.....18
Abstract.....................................................19
Introduction.................................................20
Materials and methods........................................22
Plant materials and assay conditions.........................22
mRNA isolation and cDNA library construction.................22
cDNA library screening.......................................23
DNA isolation and analysis...................................23
RNA isolation and analysis...................................24
Protein isolation and analysis...............................25
Anti-IPO serum preparation...................................25
Protein expression and purification..........................26
Hemagglutination test........................................26
Insect feeding experiment....................................27
Results......................................................28
IPO gene was cloned by cDNA library screening................28
Sweet potato contains two copies of the IPO gene.............28
IPO gene expression is restricted to certain varieties of sweet potato.......................................................29
Expression of IPO protein following wounding.................30
His-IPO fusion protein agglutinates human blood..............30
His-IPO fusion protein binds carbohydrates...................31
His-IPO fusion protein reduces silkworm growth and survival rates........................................................32
Discussion...................................................34
References...................................................38
Figures......................................................42
Chapter three:
Expression of the ipomoelin gene from sweet potato is regulated by dephosphorylated proteins, calcium ion, and ethylene......52
Abstract.....................................................53
Introduction.................................................54
Materials and methods........................................57
Plant materials and assay conditions.........................57
RNA isolation and analysis...................................57
Ca2+ detection by confocal scanning microscope...............58
Results......................................................60
Mechanical damage induces IPO gene expression................60
MeJA induces IPO gene expression via dephosphorylated proteins.....................................................60
Effects of ABA and SA on IPO gene expression.................61
Ca2+ is involved in the activation of IPO gene...............62
MeJA does not induce the accumulation of Ca2+................62
Ethylene is involved in the induction pathway of IPO gene....63
Discussion...................................................65
References...................................................70
Figures......................................................77
Chapter four:
Involvement of polygalacturonic acid and chitosan in the induction of a Wound-Inducible Gene, IPO, from Sweet Potato..86
Abstract.....................................................87
Introduction.................................................88
Materials and methods........................................91
Plant materials and assay conditions.........................91
RNA isolation and analysis...................................91
Results......................................................93
PGA and CHI stimulate the expressionof the IPO gene..........93
Protein phosphorylation and dephosphoryltion are involved in the expression of the IPO gene induced by PGA and CHI........93
Effects of calcium ion on the expression of the IPO gene induced by PGA and CHI.......................................94
MeJA is not a signal transducer for the induction of the IPO gene via PGA or CHI..........................................95
Discussion...................................................96
References...................................................98
Figures.....................................................102
Chapter five:
Ethylene induces the expression of the IPO gene via calcium ion, dephosphorylated protein, hydrogen peroxide, and MAPK..106
Abstract....................................................107
Introduction................................................108
Materials and methods.......................................111
Plant materials and assay conditions........................111
RNA isolation and analysis..................................111
Ca2+ Detection by confocal scanning microscope..............112
Results.....................................................114
Ethylene induces the expression of the IPO gene.............114
A23187 and ethylene induce the expression of Ca2+...........114
The accumulation of Ca2+induced by ethylene was inhibited by Neo, LaCl3 DILT, VERA, RR, but not EGTA.....................115
The accumulation of Ca2+ was not inhibited by PD98059.......115
Ethylene induces IPO gene expression via calcium ion releasing from organelle..............................................116
Effects of PD98059 on IPO gene expression...................116
A23187 does not induce the accumulation of IPO gene.........117
Hydrogen peroxide and MAPK are involved in the signal pathway of IPO gene expression......................................117
Discussion..................................................119
References..................................................125
Figures.....................................................130
Abeles, F.B., Morgan, P.W., Saltveit, & M.E.Jr. (1992) Ethylene in plant biology. Academic Press, San Diego, CA.
Agrawal, G.K., Rakwal, R. & Iwahashi, H. (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. Biophys. Res. Commun. 294, 1009-1016.
Allen, G.J., & Sanders, D. (1994) Two voltage-gated, calcium-release channels coreside in the vacuolar membrane of broad bean guard cells. Plant Cell 6, 685-694.
Allen, G.J., Muir, S.R., & Sanders, D. (1995) Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268, 735-737.
Auh, C.K. & Murphy, T.M. (1995) Plasma membrane redox enzyme is involved in the synthesis of O2- and H2O2 by phytophthora elicitor-stimulated rose cells. Plant Physiol. 107, 1241-1247.
Barondes, S.H. (1988) Bifunctional properties of lectins: lectins redefined. Trends Biochem. Sci. 13, 480-482.
Benhamou, N., Chamberland, H., & Pauze, F.J. (1990) Implication of pectic components in cell surface interactions between tomato root cells and Fusarium oxysporum f. sp. radicis-lycopersici. Plant Physiol. 92, 995-1003.
Bergey, D.R., & Ryan, C.A. (1999) Wound- and systemin-inducible calmodulin gene expression in tomato leaves. Plant Mol. Biol. 40, 815-823.
Bergey, D.R., Orozco-Cardenas, M., & Ryan, C.A. (1999) A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc. Natl. Acad. Sci. USA 96, 1756-1760.
Berridge, M.J. (1984) Inositol triphosphate and diacylglycerol as secondary messengers. Biochem. J. 220, 345-360.
Berridge, M.J., Lipp, P. & Bootman, M.D. (2000) The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 1, 11-21
Birkenmeier, G.F., & Ryan, C.A. (1998) Wounding signaling in tomato plants-evidence that ABA is not a primary signal for defense gene activation. Plant Physiol.117, 687-693.
Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T.M., Mueller, M.J., Xia, Z.Q., & Zenk, M.H. (1995) The octadecanoid pathway: signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci.USA 92, 4099-4105.
Blume, B., Nürnberger, T., Nass, N., & Scheel, D. (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley, Plant Cell 12, 1425-1440.
Bögre, L., Ligterine, W., Meskiene, I., Barker, P.J., Heberie-Bors, E., Huskisson, N.S., & Hirt, H. (1997) Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell 9, 75-83.
Bowler, C., & Fluhr, R. (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5, 241-246.
Bowles, D.J. (1990) Defense-related proteins in higher plants. Annu. Rev. Biochem. 45, 113-141.
Bowlwe, C. & Fluhr, R. (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5, 241-246.
Chatterjee, B., Vaith, P., Chatterjee, S., Karduck, D., & Uhlenbruck, G. (1979) Comparative studies of new marker lectins for alkali-labile and alkali-stable carbohydrate chains in glycoproteins. Int. J. Biochem. 10, 321-327.
Chatterjee, B., Vaith, P., Chatterjee, S., Karduck, D., & Uhlenbruck, G. (1979) Comparative studies of new marker lectins for alkali-labile and alkali-stable carbohydrate chains in glycoproteins. Int. J. Biochem. 10, 321-327
Chen, Y.-C., Chang, H.-S., Cheng, W. T.-K., & Jeng, S.-T. (2002) Cloning and expression of the ipomoelin gene from sweet potato. Taiwania 47, 24-30.
Chen, Y. C., Tseng, B.W., Huang, Y.L., Liu, Y.C., & Jeng, S.T. (2003) Expression of the ipomoelin gene from sweet potato is regulated by dephosphorylated proteins, calcium ion, and ethylene. Plant Cell Environ. 26, (in press).
Chen, Z., Malamy, J., Henning, J., Conrath, U., Sánchez-Casas, P., Silva, H., Ricigliano, J., & Klessing, D.F. (1995) Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc. Natl. Acad. Sci. USA 92, 4134-4237.
Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T. & Luan, S. (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129, 661-677.
Chico, J.M., Raíces, M., Téllez-Iñón, M.T., & Ulloa, R.M. (2002) A calcium-dependent protein kinase is systemicallyinduced upon wounding in tomato plants, Plant Physiol. 128, 256-270.
Chomczynski, P., & Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform. Anal. Biochem. 162, 156-159.
Ciardei, J., & Klee, H. (2001) Regulation of ethylene-mediated responses at the level of the receptor. Ann. Bot. 88, 813-822.
Conconi, A., Smerdon, M.J., Howe, G.A., & Ryan, C.A. (1996) The octadecanoid signaling pathway in plants mediates a response to ultraviolet radiation, Nature 383, 826-829.
Creelman, R.A. & Mullet, J.E. (1995) Jasmonic acid distribution and actionin plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 92, 4114-4119.
Creelman, R.A., Tierney, M.L., & Mullet, J.E. (1992) Jasmonic /methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. USA 89, 4938-4941.
Dam, T.K., Bachhawat, K., Rani, P.G., & Surolia, A. (1998) Garlic (Allium sativum) lectins bind to high mannose oligosaccharide chains. J. Biol. Chem. 273, 5528-5535.
Dammann, C., Rojo, E., & Sánchez-Serrano. J.J. (1997) Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J. 11, 773-782.
de Jong, A.J., Yakimova, E.T., Kapchina, V.M., & Woltering, E.J. (2002) A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta. 214, 537-545.
Deikman, J. (1997) Molecular mechanisms of ethylene regulation of gene transcription. Physiol. Plant. 100, 561-566.
Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Word, E., & Ryals, J. (1994) A central role of salicylic acid in plant disease resistance. Science 266, 1247-1250.
Desikan, R., Jancock, J.T., Coffey, M.J. & Neill, S. T. (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett. 382, 213-217.
Digonnet, C., Aldon, D., Leduc, N., Dumas, C., & Rougier, M. (1997) First evidence of a calcium transient in flowering plants at fertilization. Development 124, 2867-2874.
Doares, S.H., Narváez-Vásquez, J., Conconi, A., & Ryan, C.A. (1995a) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108, 1741-1746.
Doares, S.H., Syrovets, T., Weiler, E.W., & Ryan, C.A. (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 92, 4095-4098.
Durner, J. & Klessig, D. (1999) Nitric oxide as a signal in plants. Curr. Opin. Plant Biol. 2, 369-374.
Enslen, H., Tokumitsu, H., Stork, P.J.S., Davis, R.J., & Soderling, T.R. (1996) Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent proteins kinase cascade. Proc. Natl. Acad. Sci. USA 93, 10803-10808.
Fan, X., Mattheis, J.P., Fellman, J.K. & Patterson. (1997) Effect of methyl jasmonate on ethylene and volatile production by summerred apples depends on fruit developmental stage. J. Agric. Food Chem. 45, 208-211.
Farmer, E.E., & Ryan, C.A. (1992) Octadecanoid-derived signals in plants. Trends Cell Biol. 2, 236-241.
Farmer, E.E., Pearce, G., & Ryan, C.A. (1989) In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factors. Proc. Natl. Acad. Sci. USA 86, 1539-1542.
Foissner, I., Wendehenne, D., Langebartels, C., & Durner, J. (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J. 23, 817-824.
Frankling-Tong, V.E., Droback, B.K., Allan, A.C., Watkins, P.A.C., & Trevawas, A.J. (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-triphosphate. Plant Cell 8, 1305-1321.
Gilroy, S., Fricker, M., Read, N., & Trewavas, A.J. (1991) Role of calcium in signal transduction of Commelina guard cells. Plant Cell 3, 333-344.
Goldstein, I.J., & Hayes, C.E. (1978) The lectins: Carbohydrate-binding proteins of plants and animals. Adv. Carbohyd. Chem. Bi. 35, 127-340.
Grichko, V.P., & Glick, B.R. (2001) Ethylene and flooding stress in plants. Plant Physiol. Biochem. 39, 1-9.
Haley, A., Russell, A.J., Wood, N., Allan, A.C., Knight, M., Campbell, A.K., & Trewavas, A.J. (1995) Effects of mechanical signaling on plant cell cytosolic calcium. Proc. Natl. Acad. Sci. USA 92, 4124-4128.
Harms, K., Ramirez, I., & Peña-Cortés, H. (1998) Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves and salicylic acid. Plant Physiol. 118, 1057-1065.
He, Y., Fukushige, H., Hildebrand, D. & Gan, S. (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876-884.
Heldin, C.H. & Purton, M. (1996) Signal Transduction. pp205-221.
Hepler, P.K. & Wayne, R.O. (1985) Calcium and plant development. Annu. Rev. Plant Physiol. 36, 397-439.
Hess, P. (1988) Elementary properties of cardiac calcium channels: a brief review. Can. J. Physiol. Pharmacol. 66, 1218-1223.
Holmskov, U., Malhotra, R., Sim, R.B., & Jensenius, J.C. (1994) Collectins: collagenous C-type lectins of the innate immune defense system. Immunol. Today 15, 67-74.
Howe, G.A., Lightner, J., Brose, J., & Ryan, C.A. (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8, 2067-2077.
Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T. & Shinozaki, K. (2000) Protein phosphorylation and dephosphorylation in environmental stress responses in plants. Adv Bot. Res. 32, 355-377.
Imanishi, S., Kito-Nakamura, K., Matsuoka, K., Morikami, A., & Nakamura, K. (1997) A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-inducible protein. Plant Cell Physiol.38, 643-652.
Irving, H., Gehring, C., & Parish, R.W. (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc. Natl. Acad. Sci. USA 89, 1790-1794.
Jeng, S.T., Gardner, J.F., & Gumport, R.I. (1992) Transcription termination in vitro by bacteriophage T7 RNA polymerase: the role of sequence elements within and surrounding a rho-independent transcription terminator. J. Biol. Chem. 267, 19306-19312.
Jih, P.J., Chen, Y.C., & Jeng, S.T. (2003) Involvement of Hydrogen Peroxide and Nitric Oxide in Expression of the Ipomoelin Gene from Sweet Potato. Plant Physol. 132, 381-389.
Kao, J.P.Y, Harootunian, A.T., & Tsien, R.Y. (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J. Biol. Chem. 264, 8179-8184.
Keller, T., Damude, H.G., Werner, D., Doener, P., Dixon, R.A., & Lamb, C. (1998) A Plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell. 10, 255-266.
Kenton, P., Mur, L.A.J., & Draper, J. (1999) A requirement for calcium and protein phosphatase in the jasmonate-induced increase in tobacco leaf acid phosphatase specific activity. J. Exp. Bot. 50, 1331-1341.
Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shah, J., Zhang, S., & Kachroo, P. (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA 97, 8849-8855.
Knight, M.R., Campbell, A.K., Smith, S.M., & Trewaves, A.J. (1991) Transgenic plant aequorin reports the effect of touch, cold-shock and elicitor on cytoplasmic calcium. Nature 352, 524-526.
Kumar, D. & Klessig, D.F. (2000) Differential induction of tobacco MAP kinase by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol. Plant-Microb. Interact. 13, 347-351.
Lee, S.H., Lee, M. H., Chung, W.I., & Liu, J.R. (1998) WAPK, a Ser/Thr protein kinase gene of Nicotiana tabacum, is uniquely regulated by wounding, abscisic acid and methyl jasmonate. Mol. Cell. Biol. 259, 516-522.
León, J., Rojo, E., & Sánchez-Serrano, J.J. (2001) Wound signaling in plants. J. Exp. Bot. 52, 1-9.
León, J., Rojo, E., Titarenko, E., & Sánchez-Serrano, J.J. (1998) Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by calcium/calmodulin in Arabidopsis thaliana, Mol. Gen. Genet. 258, 412-419.
Marks, A.R. (1997) Intracellular calcium-release channels: Regulators of cell life and death. Amer. J. Physiol. 272, H597-H605.
Matto, A.K., & Suttle, J.C. (1991) The plant hormone ethylene. CRC press, Boca Raton, FL.
McAinsh, M., Brownlee, C. & Hetherington, A.M. (1992) Partial inhibition of ABA-induced stomatal closure by calcium-channel blockers. Proc. Roy. Soc. London series B. 243, 195-201.
McAinsh, M., Webb, A.A.R., Taylor, J.E., & Hetherington, A.M. (1995) Stimulus-induces oscillations in guard cell cytosolic free calcium. Plant Cell 7, 1207-1209.
McConn, M., Creelman, R.A., Bell, E., Mullet, J.E., & Browse, J. (1997) Jasmonate is essential for insect defense in Arabidopsis, Proc. Natl. Acad. Sci. USA 94, 5473-5477.
Meindl, T., Boller, T., & Felix, G. (1998) The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10, 1561-1570.
Memelink, J., Verpoorte, R., & Kijne, J.W. (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci. 6, 212-219.
Menke, F.L.H., Parchmann, S., Mueller, M.J., Kijne, J.W., & Memelink, J. (1999) Involved of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpeoid indole alkaloid biosynthetic genes in Catharanthus roseru. Plant Physiol. 119, 1289-1296.
Meskiene, I. & Hirt, H. (2000) MAP kinase pathways: molecular plug-and-play chips for the cell. Plant Mol. Biol. 42, 791-806.
Min, X.J., & Bartholomew, D.P. (1996) Effect of plant growth regulators on ethylene production, 1-aminocyclopropane-1-carboxylic acid oxidase activity, and initiation of inflorescence development of pineapple. J. Plant Growth Regul. 15, 121-128.
Møller, S.G. & Chua, N.H. (1999) Interactions and intersections of plant signaling pathways. J. Mol. Biol. 293, 219-234.
Moyen, C., Hammond-Kosack, K.E., Jones, J., Knight, M.R., & Johannes, E. (1998) Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells : calcium mobilization from intra- and extracellular compartments. Plant Cell Environ. 21, 1101-1111.
Murashige, T., & Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497.
Neth, O., Jack, D.L., Dodds, A.W., Holzel, H., Klein, N.J., & Turner, M.W. (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 68, 688-693.
Nucifora, F.C.Jr., Sharp, A.H., Milgram, S.L., & Ross, C.A. (1996) Inositol 1,4,5-trisphosphate receptors in endocrine cells: Localization and association in hetero- and homotetramers. Mol. Biol. Cell. 7, 949-960.
O’Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., & Bowles, D.J. (1996) Ethylene as a signal mediating the wound response of tomato plants. Science. 274, 1914-1917.
O''Donnell, P.J., Jones, J.B., Antoine, F.R., Ciardi, J., & Klee, H.J. (2001) Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J. 25, 315-323.
Ohto, M., Hayashi, K., Isobe, M., & Nakamura, K. (1995) Involvement of Ca2+ signaling in the sugar-inducible expression of genes coding for sporamin and -amylase of sweet potato. Plant J. 7, 297-307.
Oldenburg, K.R., Loganathan, D., Goldstein, I.J., Schultz, P.G., & Gallop, M.A. (1992) Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc. Natl. Acad. Sci. USA 89, 5393-5397.
Oñate-Sánchez, L. & Singh, K.B. (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 128, 1313-1322.
Orozco-Cardenas, M. & Ryan, C.A. (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via octadecanoid pathway. Proc. Natl. Acad. Sci. U.S.A. 96, 6553-6557.
Orozco-Cárdenas, M.L. & Ryan, C.A. (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol. 130, 487-493.
Orozco-Cárdenas, M.L., Narváez-Vásquez, J., & Ryan, C.A. (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13, 179-191.
Peña-Cortés, H., Albrecht, T., Prat, S., Weiler, E.W., & Willmitzer, L. (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191, 123-128.
Peña-Cortés, H., Prat, S., Atzorn, R., & Willmitzer, L. (1996) Abscisic acid-deficient plants do not accumulate proteinase inhibitor II gene in potato and tomato. Planta 198, 447-451.
Peña-Cortés, H., Sánchez-Serrano, J.J., Mertens, R., Willmitzer, L., Part, S. (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc. Natl. Acad. Sci. USA 86, 9851-9855.
Plant Cell 4, 1123-1130.
Powell, K.S., Spence, J., Bharathi, M., Gatehouse, J.A., & Gatehouse, A.M.R. (1998) Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J. Insect Physiol. 44, 529-539.
Pozzan, T., Rizzuto, R., Volpe, P. & Meldolesi, J. (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74, 595-636.
Qui, Z.-H., Gijon, M.A., de Carvalho, M.S., Spencer, D.M., & Leslie, C.C. (1998) The role of calcium and phosphorylation of cytosolic phospholipase A2 in regulating arachidonic acid release in macrophages. J. Biol. Chem. 273, 8203-8211.
Ranjan, R., & Lewak, S. (1995) Interaction of jasmonic and abscisic acid in the control of lipase and protease in germinating apple embryos. Physiol. Plant. 93, 421-426.
Rasmussen H, Goodman DBP (1997) Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev. 57:421-509.
Raz, V., & Fluhr, R. (1992) Calcium requirement for ethylene-dependent responses. Plant Cell 4, 1123-1130.
Raz, V., & Fluhr, R. (1993) Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5, 523-530.
Reymond, P., Weber, H., Damond, M., & Farmer, E.E. (2000) Differential Gene Expression in Response to Mechanical Wounding and Insect Feeding in Arabidopsis. Plant Cell 12, 707-720.
Rizzuto, R. & Pozzan, T. (2003) When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nature Genetics. 34, 135-141.
Rojo, E., León, J., & Sánchez-Serrano, J.J. ( 1999) Cross-talk between wound signaling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20, 135-142.
Rojo, E., Titarenko, E., León, J., Berger, S., Vancanneyt, G., & Sánchez-Serrano, J.J. (1998) Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wounding signal transduction in Arabidopsis thaliana. Plant J.13, 153-165.
Russell, A.J., Cove, D. J., Trewavas, A.J., & Wang, T. L. (1998) Blue light but not red light induces a calcium transient in the moss Phycomitrella patens (Hedw.) B., S. & G. Planta 206, 278-283.
Sambrook, J., Fritsch, E.F., & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Sanders, D., Pelloux, J.,Brownlee, C., & Harper, J. (2002) Calcium at the crossroads of signaling. Plant Cell S401-S417.
Santanu, B., Anita, R., & Sampa, D. (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci. 161, 1025-1033.
Seo, S., Sano, H. &Ohashi, Y. (1999) Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11, 289-298.
Seo, S., Seto, H., Koshino, H., Yoshida, S., & Ohashi, Y. (2003) A diterpene as an endogenous signal for the activation of defense responses to infection with tobacco mosaic virus and wounding in tobacco, Plant Cell 15, 863-873.
Sheen, J. (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274, 1900-1902.
Silverman-Gavrila, L.B., & Lew, R.R. (2001) Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa, Eur. J. Cell Biol. 80, 379-390.
Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C., & Ronald, P. (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804-1806.
Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Pelt, J.A.N., Mueller, M.J., Buchala, A.J., Métraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X. & Pieterse, C.M.J. (2003) NPR1 modulated cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760-770.
Stamler, J.S. (1994) Redox signaling: nitrosylation and related target interactions of nitric acid. Cell 78, 931-936.
Startmann, J.W., & Ryan, C.A. (1997) Myelin based protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitor. Proc. Natl. Acad. Sci. USA 94, 11085-11089.
Tena, G., Asai, T., Chiu, W.-L. & Sheen, J. (2001) Plant mitogen activated protein kinase signaling cascades. Curr. Opin. Plant Biol. 4, 392-400.
Trewavas, A., & Gilroy, S. (1991) Signal transduction in plant cells. Trends Genet. 7, 356-361.
Tsien, R. Y. (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527-528.
Tsien, R.W., Hess, E., McCleskey, E.W. & Rosenberg, R.L. (1987) Calcium channels: mechanism of selectivity, permeation, and block. Annu. Rev. Biophys. Chem. 16, 265-290.
Usami, S., Banno, H., Ito, Y., Nishihama, R., & Machida, Y. (1995) Cutting activates a 46-kilodalton protein kinase in plants. Proc. Natl. Acad. Sci. USA 92, 8660-8664.
Van Damme, E.J., Barre, A., Verhaert, P., Rougé, P., & Peumans, W.J. (1996) Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett. 397, 352-356.
Van Damme, E.J., Peumans, W.J., Barre, A., & Rougé, P. (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 17, 575-692.
Ward, J.M., & Schroeder, J.I. (1994) Calcium activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6, 669-683.
Wasternack, C., Atzorn, R., Peña-Cortés, H., & Parthier, B. (1996) Alternation of gene expression by jasmonate and ABA in tobacco and tomato. J. Plant Physiol. 147, 503-510.
Watanabe, T., Fujita, H., & Sakai, S. (2001) Effects of jasmonic acid and ethylene on the expression of three genes for wound-inducible 1-aminocyclopropane-1-carboxylate synthase in winter squash (Cucurbita maxima). Plant Sci. 161, 67-75.
Williamson, J.R., & Monck, R.I. (1989) Hormone effects on cellular Ca2+ fluxes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 107-124.
Zhang, S. & Klessig, D.F. (2001) MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520-527.
Zhu-Salzman, K., Shade, R.E., Koiwa, H., Salzman, R.A., Narasimhan, M., Bressan, R.A., Hasegawa, P.M., & Murdock, L.L. (1998) Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proc. Natl. Acad. Sci. USA 95, 15123-15128.
Zimmermann, S., Nürnberger, T., Frachisse, J.M., Wirtz, W., Guern, J., Hedrich, R., & Scheel, D. (1997) Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc. Natl. Acad. Sci. USA 94, 2751-2755.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top