跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮崇維
研究生(外文):Juan Chung-Wei
論文名稱:使用空間與顏色特徵的平均移動演算法於物件大小與方位追蹤
論文名稱(外文):A New Spatial-Color Mean-Shift Object Tracking Algorithm with Scale and Orientation Estimation
指導教授:胡竹生胡竹生引用關係
指導教授(外文):Hu Jwu-Sheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:84
中文關鍵詞:平均移動演算法方位追蹤大小追蹤
外文關鍵詞:Mean-Shift trackingOrientation EstimationScale Estimation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中發展了一個以空間和顏色為基礎的平均移動演算法。其中以空間中顏色分佈的相對資訊和顏色的特徵來定義物件的模型,並以新的相似度函數發展出新的平均移動演算法來做物件追蹤,為了要使物件追蹤的效果更穩健,針對不同的特徵做了實驗並選出使追蹤效果最好的顏色特徵,接著並在演算法中加入了以背景資訊而建立的權重值,使得演算法具有更好的穩定性。而為了解決在物件追蹤中常遇到的物件大小與方位的問題,我們使用了主成分分析的方法來估測物件的方位,並以主成分分析所延伸而來的演算法來估計物件的大小,而此方法確實可以自動更新物件的大小與方位。在最後的實驗中則可以看出此追蹤演算法可以解決部份遮蔽和物件變形的問題,且在複雜背景下仍具有良好的即時追蹤效能。
In this thesis, we propose the new mean-shift tracking algorithms based on a new similarity measure function. The joint spatial-color feature is used as our basic model elements. The target image is modeled with the kernel density estimation and we use the concept of expectation of the estimated kernel density to develop the new similarity measure functions. With these new similarity measure functions, two new similarity-based mean-shift tracking algorithms were derived. To enhance the robustness, we add the weighted-background information to the proposed mean-shift tracking algorithm. In order to solve the deformation problem, the principal component analysis method is used to update the orientation of the tracking object, and a simple method is elaborated to monitor the scale of the object. The results of the experiments show that the new similarity-based tracking algorithms are real-time and can track the moving object correctly, and update the orientation and scale of the object automatically.
摘要 i
ABSTRACT ii
誌謝 iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1. Introduction 1
1.1 MOTIVATION AND OBJECTIVE 1
1.2 LITERATURE REVIEW 2
1.3 THESIS SUBJECT AND CONTRIBUTION 4
1.4 OUTLINES OF THESIS 5
Chapter 2. Traditional Mean-Shift Tracking Algorithm 6
2.1 INTRODUCTION 6
2.2 TARGET REPRESENTATION 6
2.2.1 Model Representation 7
2.2.2 Candidate Representation 8
2.3 SIMILARITY BASED ON BHATTACHARYYA COEFFICIENT 9
2.4 TRADITIONAL MEAN-SHIFT TRACKER 10
2.5 MEAN-SHIFT TRACKING ALGORITHM PROCEDURE 13
Chapter 3. Spatial-Color Mean-Shift Object Tracking Algorithm 15
3.1 INTRODUCTION 15
3.2 MODEL DEFINITION 15
3.2.1 Paper Survey about Spatiogram 16
3.2.2 A Joint Spatial-Color Feature Model 17
3.3 PAPER SURVEY ABOUT NEW SIMILARITY MEASURE 18
3.4 SPATIAL-COLOR MEAN-SHIFT OBJECT TRACKING ALGORITHM 19
3.4.1 Kernel Density Estimation of the Model Image 19
3.4.2 Similarity Measure Function 20
3.4.3 Spatial-Color Mean-Shift Tracker 21
3.4.4 Another Derivation of the New Mean-Shift Tracker 22
3.4.5 Spatial-Color Mean-Shift Tracking Procedure 25
3.5 CHOICE OF THE COLOR FEATURE SPACE 27
3.6 BACKGROUND-WEIGHTED INFORMATION 28
3.7 UPDATE OF SCALE AND ORIENTATION 29
3.7.1 Introduction of Principal Component Analysis 30
3.7.2 Orientation Selection by Principal Component Analysis 31
3.7.3 Adding Weighted-Background Information 33
3.7.4 Scale Selection 34
3.8 SUMMARY 35
Chapter 4. Experiment Results 38
4.1 EXPERIMENT ILLUSTRATION 38
4.2 SPATIAL-COLOR MEAN-SHIFT TRACKERS WITH RGB FEATURE 39
4.2.1 Face Sequence 39
4.2.2 Cup Sequence 41
4.2.3 Walking Girl Sequence 43
4.3 SPATIAL-COLOR MEAN-SHIFT TRACKERS WITH NORMALIZED FEATURE 44
4.3.1 Face Sequence 44
4.3.2 Cup Sequence 48
4.3.3 Walking Girl Sequences 52
4.4 SPATIAL-COLOR MEAN-SHIFT TRACKERS WITH NORMALIZED FEATURE AND WEIGHTED INFORMATION 54
4.4.1 Face Sequence 55
4.4.2 Cup Sequence 61
4.4.3 Walking Girl Sequence 66
4.5 SPATIAL-COLOR MEAN-SHIFT TRACKERS WITH SCALE AND ORIENTATION 70
4.5.1 Walking Person Sequence 70
4.5.2 Surveillance Sequences 74
4.6 PERFORMANCE ANALYSIS 78
Chapter 5. Conclusion and Future Work 82
References 83
[1] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Trans. On Pattern Analysis and Machine Intelligence, 25(5):564-577, May 2003.
[2] F. Porikli, O. Tuzel, “Multi-kernel object tracking,” IEEE International Conference on Multimedia and Expo, pp. 1234-1237, 2005.
[3] V. Parameswaran, V. Ramesh, and I. Zoghlami, “Tunable kernels for tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.2179-2186, 2006.
[4] R. Collins, “Mean-shift blob tracking through scale space”, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2003.
[5] K. She, G. Bebis, H. Gu, and R. Miller, “Vehicle tracking using on-line fusion of color and shape features”, Proc. IEEE Conf. on Intelligent Transportation Systems, 2004.
[6] Q. Zhao and H. Tao, “Object tracking using color correlogram,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2005.
[7] S. Birchfield and S. Rangarajan, “Spatiograms versus histograms for region-based tracking,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2005.
[8] H. Zhang, Z. Huang, W. Huang, and L. Li, “Kernel-based method for tracking objects with rotation and translation,” Proc. International Conf. on Pattern Recognition, 2004.
[9] Z. Zivkovic and B. Krose, “An em-like algorithm for color-histogram-based object tracking,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2004.
[10] F. Porikli and O. Tuzel, “Object tracking in low-frame-rate video,” Proc. PIE/EI—Image and Video Communication and Processing, San Jose, CA, 2005.
[11] T. Lindeberg, “Feature detection with automatic scale selection,” International Journal of Computer Vision, vol. 30(2), pp.79-116, November 1998.
[12] C. Yang, R. Duraiswami, and L. Davis, “Efficient mean-shift tracking via a new similarity measure,” IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 176-183, 2005.
[13] T. Hastie, R. Tibshirani, andJ. Friedman, “The elements of statistical learning,” Springer, 2001.
[14] http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm
[15] http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
[16] D.W. Scott, “Multivariate Density Estimation,” New York: Wiley, pp.24-26, 1992.
[17] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects using mean shift,” Best Paper Award, IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, vol.2, pp.142-149, 2000.
[18] D. Comaniciu, P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24 n.5, pp.603-619, May 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top