跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王瑞豪
研究生(外文):jui-hao Wang
論文名稱:以熱燈絲化學氣相沈積法結合鋁誘發結晶技術研製低溫多晶矽薄膜
論文名稱(外文):Fabrication of Low-Temperature Poly-Si Thin-Films Using Hot-Wire CVD and Al-induced Crystallization Techniques
指導教授:武東星
指導教授(外文):D. S. Wuu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:83
中文關鍵詞: 熱燈絲化學氣相沈積 鋁誘發結晶 多晶矽薄膜 拉曼光譜 電子遷移率
外文關鍵詞:Hot-Wire Chemical Vapor Deposition Aluminum-induced crystallization Mobility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要使用不同矽甲烷與氫氣混合比例之熱燈絲化學氣相沈積法快速沈積其矽膜並搭配鋁誘發技術(AIC)製備高品質多晶矽薄膜,並以此大晶粒之多晶矽薄膜當晶種層,往上快速沈積大晶粒多晶矽薄膜。在本論文中,我們探討鋁誘發結晶薄膜對於退火時間及溫度之間的變化,及在晶種層上以熱燈絲化學氣相法所沈積出矽膜之形態,更進一步利用X光繞射、拉曼量測、場發射電子顯微鏡、穿透式電子顯微鏡及霍爾量測分析每一層的多晶矽薄膜特性。
在各層膜分析中,在X光繞射及拉曼量測光譜中,可清楚看出在鋁誘發晶種層往上沈積之多晶矽膜在結晶方向(111)、(220)及(311)上具有比鋁誘發結晶矽薄膜更強的結晶性。從電子顯微鏡可以觀察到大約1 m粒徑,而往上沈積之薄膜具有大於1 m之粒徑。結果顯示利用晶種層向上沈積矽膜之晶粒比直接在玻璃基板沈積之矽膜還要大,其原因主要是藉由晶種層使得往上沈積之矽膜延著其晶種層之結晶方向成長,進而獲得更高結晶率之薄膜,由霍爾效應與拉曼光譜量測結果得知其電子遷移率分別為22及18 cm2/V-s且結晶率高達91及95 %。故以鋁誘發結晶技術當其晶種層及以熱燈絲化學氣相沈積法在晶種層上沉積矽膜能得到良好電性及結晶率,故結合兩者技術應用在產業的發展上,並具有發展的實用性。
The study utilized hot-wire chemical vapor deposition (HWCVD) which mixed different ratio of SiH4 and H2 to deposit Si-film rapidly and also used aluminum-induced crystallization (AIC) to fabricate high-quality polycrystalline silicon (poly-Si) films which served as a seed layer and accumulated large grain poly-Si films quickly above the seed layer. The purpose of the study was to investigate the change of AIC thin films due to different annealing time and temperature, and to further analyze characteristics by X-ray diffraction (XRD), Raman spectroscopy diffraction techniques, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Hall measurement of the seed layer that was produced by the AIC technique and poly-Si films on seed layer that were deposited by HWCVD.
For analysis of each layer, the poly-Si film have been used to detect the crystallization and preferred (111), (220) and (311) orientation by XRD and Raman spectroscopy diffraction techniques which be stronger than AIC-film. The microstructures of each film were observed by SEM and TEM. It was found that the AIC of grain was approximately 1 µm and the Si layers formed on seed layer of grain (1 µm in size) can be obtained. However, the lateral grain size of poly-Si (deposited on seed layer) was larger than the poly-Si films deposited directly on a glass substrate by HWCVD. Since the Si-atoms deposit in the orientation of seed layer, the poly-Si would be obtained. As a result, high crystalline fractions (91 and 95%) and high electron mobility (22 and 18 cm2/V-s) of poly-Si films were obtained by using a combination of HWCVD and AIC techniques.
封面內頁
簽名頁
授權書 iii
中文摘要 iv
Abstract v
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xii

第一章 緒論
1.1前言 1
1.2低溫多晶矽之技術發展 1
1.3太陽電池簡介 3
1.3.1太陽能能源的國際使用情形 3
1.3.2太陽電池簡介 4
1.3.3多晶矽太陽能電池技術的發展現況與應用 6
第二章 鋁誘發矽結晶及熱燈絲沈積之原理
2.1使用鋁誘發低溫多晶矽薄膜結晶之原因 8
2.2鋁誘發矽結晶之原理 8
2.3使用熱燈絲沈積矽膜之原因 8
2.4熱燈絲沈積之原理 10
2.5論文回顧 10
2.5.1鋁誘發技術文獻回顧 10
2.5.2在利用熱燈絲化學氣相沈積矽薄膜之文獻回顧 11
第三章 實驗方法
3.1實驗流程 14
3.2實驗步驟 15
3.3實驗設備 16
3.3.1電子束蒸鍍機 16
3.3.2退火系統 18
3.3.3熱燈絲化學氣相沈積 18
3.4分析儀器 18
3.4.1場發射掃描式電子顯微鏡 18
3.4.2 X光繞射儀 19
3.4.3拉曼光譜儀 20
3.4.4霍爾量測 21
第四章 結果與討論
4.1鋁薄膜對誘發之影響 23
4.2多晶矽薄膜/鋁於退火後之關係 24
4.3熱處理條件對鋁-矽誘發之影響 24
4.4熱處理溫度對鋁-矽誘發之影響 25
4.5熱處理時間對鋁-矽誘發之影響 26
4.6電性量測 27
4.7鋁誘發當晶種層沈積多晶矽薄膜 28
第五章 結論與未來展望
5.1結論 31
5.2未來展望 32參考文獻 65
[1]S. W. Lee and S. K. Joo, “Low temperature poly-Si thin film transistor fabrication by metal-induced lateral crystallization,”IEEE Electron Devices Lett., vol. 17, pp. 160-165, 1996.
[2]K.Tanaka, “Characteristics of Offset-Structure Polycrystalline-Silicon Thin-Film Transistors,”IEEE Electron Devices lett., vol. 9, pp. 23-27, 1988.
[3]K. Yamamoto, “Very thin film crystalline silicon solar cells on glass substrate fabricated at low temperature,”IEEE Transactions Electron Devices., vol. 46, pp. 2041-2048, 1999.
[4]R. E. I. Schropp and J. K. Rath, “Novel profiled thin-film polycrystalline silicon solar cells on stainless steel substrates,”IEEE Transactions Electron Devices., vol. 46, pp. 2069-2073, 1999.
[5]S. Fujii, Y. Fukawa, H. Takahashi, Y. Inomata, K. Okada, K. Fukui and K. Shirasawa,“Production technology of large-area multicrystalline silicon solar cells, ”Sol. Energy Mater. Sol. Cells, vol. 65, pp. 269-274, 2001.
[6]M. A. Green, J. Zhao, A. Wang and S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,”Sol. Energy Mater. Sol. Cells, vol.65, pp. 9-14, 2001.
[7]C. F. Yeh, C. L. Chen, Y. C. Yang, S. S. Lin, T. Z. Yang, and T. Y. Hong, “Low-temperature-processed poly-Si thin-film transistor using solid-phase-crystallization and liquid-phase-deposited gate oxide,”Jpn. J. Appl. Phys., vol. 33, pp. 1798-1802, 1994.
[8]R. S. Sposili, and J. S. Im, “Sequential lateral solidification of thin silicon films on SiO2,”Appl. Phys. Lett., vol. 69, pp. 2864-2871, 1998.
[9]T. H. Ihn, T. K. Kim, and B. Lee, “A study on the leakage current of poly-Si TFTs fabricated by metal induced lateral crystallization,”Microelectronics Reliability., vol. 39, pp. 53-58, 1999.
[10]I. Yasuaki, N. Atsushi, U. Yukiharu, and F. Takashi, “Polycrystalline Sillicon Thin Film for Solar Cells Utilizing Aluminum Induced Crystallization Method,”Jpn. J. Appl. Phys., vol. 43, pp .877-881, 2004.
[11]E. Pihan, A. Slaoui, P. Roca I Cabarrocas, and A. Focsa, “Polycrystalline silicon films by aluminium-induced crystallization: growth process vs silicon deposition method,”Thin Solid Film., vol. 451, pp. 328-333, 2004.
[12]O. Nast, S. Brehme, D. H. Neuhaus, and S. R. Wenham, “Polycrystalline Silicon Thin Films on Glass by Aluminum-Induced Crystallization,”IEEE Trans. Electron Devices, vol. 46, pp. 2062-2066, 1999.
[13]M. S. Ashtikar, and G. L. Sharma, “Silicide mediated low temperature crystallization of hydrogenated amorphous silicon in contact with aluminum,”J. Appl. Phys., vol. 78, pp. 913-916, 1995.
[14]M. S. Haque, H. A. Naseem, and W.D. Brown, “Aluminum-induced crystallization and counter-doping of phosphorous-doped hydrogenated amorphous silicon at low temperature, “J. Appl. Phys., vol. 79, pp. 7529-7534, 1996.
[15]C. Ornaghi, G. Beaucarne, J. Poortmans, J. Nijs, and R. Mertens, “Aluminum-induced crystallization of amorphous silicon:influence of materials characteristics on the reaction,” Thin Solid Film, vol. 451, pp. 476-480, 2004.
[16]K. Naskamura, M.-A. Nicolet and J. W. Mayer, “Interaction of Al layers with polycrystalline Si,”J. Appl. Phys., vol. 46, pp. 4678-4684, 1975.
[17]Y. Masaki, T. Ogata, and H.Ogawa, “Kinetics of solid phase interaction between Al and a-Si:H,”J. Appl. Phys., vol. 76, pp. 5225-5230, 1994.
[18]T. J. Konno and R. Sinclair, “Crystallization of silicon in aluminum/amorphous-silicon multilayers,”Philos. Mag. B, vol. 66, pp. 794-780, 1992.
[19]M. S. Haque, H. A. Naseem, and W. D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperatures,”J. Appl. Phys., vol. 75, pp. 3928-4002, 1994.
[20]K. Naskamura, J. O. Olowolafa, S. S. Lau, M-A. Nicolet, and J. W. Mayer, “Interaction of metal lays with polycrystalline Si+,”J. Appl. Phys., vol. 47, pp. 1278-1282, 1976.
[21]S. W. Lee, T. H. Ihn and S. K. Joo,”Pd induced lateral crystallization of amorphous Si thin films,” Appl. Phys. Lett., vol. 66, pp. 1671-1675, 1995.
[22]C. Hayzelden, and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of mickel-implanted amorphous silicon thin films,”J. Appl. Phys., vol. 73, pp. 8279-8283, 1993.
[23]S. Y. Yoon, and J. y. Oh, “Low temperature solid phase crystallization of amorphous silicon at 380 Cm,”J. Appl. Phys., vol.84, pp. 6463-6468, 1998.
[24]L.Hultman, A. Robertsson, and H. T. G. Hentzell, “crystallization of amorphous silicon during thin-film gold reaction,”J. Appl. Phys., vol. 62 pp. 3647-3451, 1987.
[25]M. Miyasaks, J. Stinclair, “Excimer laser annealing of amorphous and solid phase crystallized silicon films,”J. Appl. Phys., vol.86, pp. 5556-5561, 1999.
[26]G. K. Giust, T. W. Sigmon, J.B.Boyce, and J.Ho, “High-performance laser-processed poly-silicon thin-film transistors,”IEEE Electron Device Lett., vol. 20, pp. 77-79, 1999.
[27]H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, and S. Nakano, “High mobility poly-Si TFT by a new laser annealing method for large area electronics,”J. Appl. Phys., vol. 23, pp. 563-568, 1991.
[28]P. Baeri, and E. Rimini, “Laser annealing of silicon,”Mater. chemistry and phys., vol. 46, pp. 169-177, 1996.44
[29] K. Isshikawa, M. Ozawa, and C. H. OH, “Excimer-Laser-Induced Lateral-Growth of Silicon Thin Films,”Jpn. J. Appl. Phys., vol. 37, pp. 731-736, 1998.
[30]K. Zweibel, “Issues in thin-film PV manufacturing cost reduction”, Solar Energy & Solar Cells, 1999. (http://www.nrel.gov/ncpv/ documents/25249.html)
[31]電機月刊第十一卷,第十二期, 2004
[32]S. Gall, M. Muske, I. Sieber, O. Nast, and W. Fuhs, “Aluminum-induced crystallization of amorphous silicon,”J. Non-Crystalline Solid., vol. 299, pp. 741-745, 2002.
[33]H. Matsumura, H. Umemoto, and A. Masuda., “Cat-CVD(hot-wire CVD): how different from PECVD in preparing amorphous silicon,”J. Non-Crystalline Solid, vol. 338, pp. 19-26, 2004.
[34]Ruud E.I. Schropp, “Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,”Thin Solid Films, vol. 451, pp. 455-465, 2004.
[35]K. Yamamoto, Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and Igari, “Thin-film poly-Si solar cell on glass substrate fabricated at low temperature,”J. Appl. Phys., vol. 66 pp. 33-38, 1999.
[36]M. S. Ashtikar and G. L. Sharma, “Silicide mediated low temperature crystallization of hydrogenated amorphous silicon in contact with aluminum,”J. Appl Phys., vol. 78, pp. 913-918, 1995.
[37]K. Naskamura, M.-A. Nicolet and J. W. Mayer, “Interaction of Al layers with polycrystalline Si,” J. Appl. Phys., vol. 46, pp. 4678-4683, 1975.
[38]C. Ornaghi, G. Beaucarne, J. Poortmans, J. Nijs, R. Mertens, “Aluminum-induced crystallization of amorphous silicon: influence of materials characteristics on the reaction”, Thin Solid Film, vol. 451, pp.276-480, 2004.
[39]M. S. Haque, H. A. Naseem and W. D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperature,” J. Appl. Phys, vol. 75, pp. 3928-3932, 1994.
[40]M. S. Haque, H. A. Naseem and W. D. Brown, “Aluminum-induced crystallization and counter-doping of phosphorous-doped hydrogenated amorphous silicon at low temperature,” J. Appl. Phys, vol. 79, pp. 7529-7534, 1996.
[41]G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys, vol. 69, pp. 6394-6400, 1991.
[42]J. H. Kim and J. Y. Lee, “Al-induced crystallization of amorphous Si thin film in a polycrystalline Al/native SiO2/ amorphous Si structure,” J. J. Appl. Phys, vol. 35, pp. 2052-2057, 1996.
[43]T. H. Ihn, B. Lee, S. K. Joo and Y. C. Jeon,“Electrical stress effect on poly-Si thin film transistors fabricated by metal induced lateral crystallization,” Jpn. J. Appl. Phys, vol. 36, pp. 5029-5034, 1997.
[44]B. Z. Weiss and I. Grimberg, “Crystallization and grown of Ni-Si alloy thin film on inert and on silicon substrates,” J. Appl. phys, vol. 77, pp. 3971-3975, 1995.
[45]S. W. Lee, T. H. Ihn and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin film transistor by selfaligned metal-induced lateral crystallization,” IEEE Electron Devices Lett., vol. 17, pp. 407-412, 1996.
[46]L. Hultman, A. Robertsson and T. G. Hentzell, “Crystallization of amorphous silicon during thin film gold reaction,” J. Appl. Phys., vol. 62, pp. 3647-3653, 1987.
[47]M. Jalochowski, M. Strozak, and R. Zdyb, “Gold-induced ordering on vicinal Si(111),”Surface Science, vol. 75, pp. 203-209,1997.
[48]M. S. Ashtikar, and G. L. Sharma, “Structural investigation of gold induced crystallization in hydrogenated amorphous silicon thin film,”Jpn. J. Appl. Phys., vol. 34, pp. 5520-5526, 1995.
[49]K. Naskamura, M.-A. Nicolet and J. W. Mayer,“Interaction of Al layers with polycrystalline Si”, Journal of Applied Physics, 46 (1975) 4678.
[50]T. J. Konno and R. Sinclair,“Crystallization of silicon in aluminum/ amorphous silicon multilayers”, Philosophical Magazine-Parts B, 66 (1992) 749.
[51]M. S. Haque, H. A. Naseem and W. D. Brown,“Interaction of aluminum with hydrogenated amorphous silicon at low temperature”, Journal of Applied Physics, 75 (1994) 3928.
[52]R. H. Bossert et al., Novem, Netherlands, Report no. DV1.1. vol. 170, 2000.
[53]K.Yamamoto, Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and Igari., J. Appl. Phys, vol. 66, pp.345-341, 1999.
[54]H.J. Wiesmann, A.K. Ghosh, T. Mcmahon, M. Strongin, J. Appl. Phys. Vol. 50, pp. 3752-3757, 1979.
[55]莊達仁編著,“VLSI製造技術”,4版,高立圖書有限公司, pp.158-160,民87。
[56]李正中,“薄膜光學與鍍膜技術”,2版,藝軒圖書出版社, pp.276-278,民90。
[57]積體電路製程技術,李世鴻著,五南圖書出版公司,民國89年3月。
[58]真空技術,蘇青森著,東華書局出版。
[59]實用真空技術,呂登復編著,國興出版社出版。
[60]汪建民主編,“材料分析”, 初版,中國材料科學學會,pp.121-149, 民87。
[61]汪建民主編,“材料分析”, 初版,中國材料科學學會,pp.11-44,民87。
[62]許樹恩、吳泰伯,“X光繞射原理語材料結構分析”,中國材料科學學會,1992。
[63]李世鴻,“半導體工程原理”,全威圖書,pp. 170-172,1997。
[64]Robert E. Reed-Hill、Reza Abbaschian “Physical Metallurgy Principles”,全華科技圖書股份有限公司,第三版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top