|
參考文獻
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58. [2] K. M. Liew, Z. X. Lei and L. W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, Compos. Struct., 120 (2015) 90-97. [3] S. Brischetto and E. Carrera, Classical and refined shell models for the analysis of nano-reinforced structures, Int. J. Mech. Sci., 55 (2012) 104-117. [4] S. Brischetto and E. Carrera, Analysis of nano-reinforced layered plates via classical and refined two-dimensional theories, Multidisc. Model. Mater. Struct., 8 (2012) 4-31. [5] Q. Wang and K. M. Liew, Molecular mechanics modeling for properties of carbon nanotubes, J. Appl. Phys., 103 (2008) 046103. [6] Q. Wang, Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes, Int. J. Solids Struct., 41 (2004) 5451-5461. [7] A. C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., 10 (1972) 1-16. [8] A. C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York (2002). [9] A. C. Eringen and D. G. B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., 10 (1972) 233-248. [10] R. F. Gibson, E. O. Ayorinde and Y. F. Wen, Vibrations of carbon nanotubes and their composites: A review, Compos. Sci. Technol., 67 (2007) 1-28. [11] J. N. Reddy and S. D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys., 103 (2008) 023511. [12] Y. Y. Zhang, C. M. Wang, W. H. Duan, Y. Xiang and Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes, Nanotechnol. 20 (2009) 395707. [13] B. Arash and Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Comput. Mater. Sci., 51 (2012) 303-313. [14] J. N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., 45 (2007) 288-307. [15] J. N. Reddy, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, Int. J. Eng. Sci., 48 (2010) 1507-1518. [16] C. M. Wang, S. Kitipornchai, C. W. Lim and M. Eisenberger, Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134 (2008) 475-481. [17] C. M. Wang, Y. Y. Zhang, S. S. Ramesh and S. Kitipornchai, Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory, J. Phys. D: Appl. Phys. 39 (2006) 3904-3909. [18] Q. Wang and V. K. Varadan, Stability analysis of carbon nanotubes via continuum models, Smart Mater. Struct., 14 (2005) 281-286. [19] Y. Y. Zhang, C. M. Wang and N. Challamel, Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model, J. Eng. Mech., 136 (2010) 562-574. [20] Q. Wang, K. M. Liew and W. H. Duan, Modeling of the mechanical instability of carbon nanotubes, Carbon 46 (2008) 285-290. [21] Y. Z. Sun and K. M. Liew, Effect of higher-order deformation gradients on buckling of single-walled carbon nanotubes, Compos. Struct. 109 (2014) 279-285. [22] H. T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci. 52 (2012) 56-64. [23] H. T. Thai and T. P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., 54 (2012) 58-66. [24] M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E, 41 (2009) 1651-1655. [25] M. Aydogdu, Longitudinal wave propagation in multiwalled carbon nanotubes, Compos. Struct. 107 (2014) 578-584. [26] M. Aydogdu, Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mech. Res. Commun., 43 (2012) 34-40. [27] C. Li, C. W. Lim, J. L. Yu and Q. C. Zeng, Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force, Int. J. Struct. Stab. Dyn., 11 (2011) 257-271. [28] C. M. Wang, Y. Y. Zhang and S. Kitipornchai, Vibration of initially stressed micro- and nano-beams, Int. J. Struct. Stab. Dyn., 07 (2007) 555-570. [29] X. Q. He, S. Kitipornchai and K. M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids, 53 (2005) 303-326. [30] S. Kitipornchai, X. Q. He and K. M. Liew, Buckling analysis of triple-walled carbon nanotubes embedded in an elastic matrix, J. Appl. Phys., 97 (2005) 114318. [31] K. M. Liew, X. Q. He and S. Kitipornchai, Buckling characteristics of embedded multi-walled carbon nanotubes, Proc. R. Soc. A, 461 (2005) 3785-3805. [32] C. M. C. Roque, A. J. M. Ferreira and J. N. Reddy, Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, Int. J. Eng. Sci., 49 (2011) 976-984. [33] J. W. Yan, K. M. Liew and L. H. He, Analysis of single-walled carbon nanotubes using the moving kriging interpolation, Comput. Methods Appl. Mech. Engrg., 229 (2012) 56-67. [34] R. Ansari, R. Rajabiehfard, B. Arash, Thermal buckling of multiwalled carbon nanotubes using a semi-analytical finite element approach, J. Therm. Stresses, 34 (2011) 817-834. [35] F. M. D. Sciarra, Finite element modelling of nonlocal beams, Physica E, 59 (2014) 144-149. [36] M. A. Eltaher, S. A. Emam, F. E. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., 96 (2013) 82-88. [37] R. Ansari, S. Sahmani and H. Rouhi, Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique, Comput. Mater. Sci. 50 (2011) 3050-3055. [38] T. Murmu and S. C. Pradhan, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E, 41 (2009) 1232-1239. [39] S. C. Pradhan and G. K. Reddy, Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM, Comput. Mater. Sci., 50 (2011) 1052-1056. [40] C. M. Wang, Y. Y. Zhang, Y. Xiang and J. N. Reddy, Recent studies on buckling of carbon nanotubes, Appl. Mech. Rev., 63 (2010) 030804. [41] H. Shima, Buckling of carbon nanotubes: a state of the art review, Mater. 5 (2012) 47-84. [42] E. Reissner, On a certain mixed variational theory and a proposal application, Int. J. Numer. Methods Eng., 20 (1984) 1366-1368. [43] E. Reissner, On a mixed variational theorem and on a shear deformable plate theory, Int. J. Numer .Methods Eng., 23 (1986) 193-198. [44] E. Carrera, An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Compos. Struct., 50 (2000) 183-198. [45] E. Carrera, Developments, ideas, and evaluations based upon Reissner’s mixed variational theorem in the modeling of multilayered plates and shells, Appl. Mech. Rev., 54 (2001) 301-329. [46] E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks, Arch. Comput. Methods Eng., 10 (2003) 215-296. [47] E. Carrera and A. Ciuffreda, Bending of composites and sandwich plates subject to localized lateral loadings: A comparison of various theories, Compos. Struct., 68 (2005) 185-202. [48] E. Carrera and A. Ciuffreda, A unified formulation to assess theories of multilayered plates for various bending problems, Compos. Struct., 69 (2005) 271-293. [49] C. P. Wu and H. Y. Li, The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates, Compos. Struct., 92 (2010) 2476-2496. [50] C. P. Wu and H. Y. Li, RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, CMC-Comput. Mater. Continua, 19 (2010) 155-198. [51] C. P. Wu and H. Y. Li, An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions, CMC-Comput. Mater. Continua, 34 (2013) 27-62. [52] C. P. Wu and H. Y. Li, RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions, Compos. Struct. 100 (2013) 592-608. [53] C. P. Wu and S. W. Yang, A semi-analytical element-free Galerkin method for the 3D free vibration analysis of multilayered FGM circular hollow cylinders, J. Intell. Mater. Syst. Struct., 22 (2011) 1993-2007. [54] C. P. Wu and W. C. Li, Quasi-3D stability and vibration analyses of sandwich piezoelectric plates with an embedded CNT-reinforced composite core, Int. J. Struct. Stab. Dyn., (2015) in press. [55] C. P. Wu and W. W. Lai, Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions, Compos. Struct. 122 (2015) 390-404. [56] Y. M. Wang, S. M. Chen and C. P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation, Comput. Mech. 45 (2010) 585-606. [57] C. M. Chen, C. P. Wu and Y. M. Wang, A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love plates, Comput. Mech. 47 (2011) 425-453. [58] G. Cowper, The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33 (1966) 335-340. [59] Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98 (2005) 124301. [60] Q. Wang and C. Wang, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnol. 18 (2007) 075702. [61] C. W. Bert and M. Malik, Differential quadrature: a powerful new technique for analysis of composite structures. Compos. Struct. 39 (1997) 179-189. [62] H. Du, M. Lim and R. Lin, Application of generalized differential quadrature method to structural problems. Int. J. Numer. Methods Eng. 37 (1994) 1881-1896. [63] C. P. Wu and C. Y. Lee, Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. Int. J. Mech. Sci. 43 (2001) 1853-1869. [64] C. Li and T. W. Chou, Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech. Mater. 36 (2004) 1047-1055. [65] R. C. Batra and A. Sears, Continuum models of multi-walled carbon nanotubes. Int. J. Solids Struct. 44 (2007) 7577-7596. [66] A. Sears and R. C. Batra, Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys. Rev. B 69 (2004) 235406. [67] M. J. Buehler, Y. Kong and H. Gao, Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126 (2004) 245-249. [68] A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu and M. N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43 (2006) 6832-6854. [69] N. Hu, K. Nunoya, D. Pan, T. Okabe and H. Fukunaga, Prediction of buckling characteristics of carbon nanotubes. Int. J. Solids Struct. 44 (2007) 6535-6550. [70] S. Brischetto, A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes. Compos. Part B. 61 (2014) 222-228.
|