跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柳俊宇
研究生(外文):Jyun-YuLiou
論文名稱:應用Reissner混合變分原理非局部Timoshenko梁理論於具組合邊界嵌入式單壁奈米碳管之彈性挫屈分析
論文名稱(外文):An RMVT-based nonlocal Timoshenko beam theory for the buckling analysis of an embedded single-walled carbon nanotube with various boundary conditions
指導教授:吳致平
指導教授(外文):Chih-Ping Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:46
中文關鍵詞:奈米碳管奈米尺度梁非局部理論Pasternak基礎Timoshenko梁變化邊界條件
外文關鍵詞:Carbon nanotubesnano-scaled beamsnonlocal theoriesPasternak foundationsTimoshenko beamsvarious boundary conditions.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文基於Reissner’s混合變分理論(RMVT),推衍非局部Timoshenko梁理論(TBT),並應用於具組合邊界單壁奈米碳管(SWCNT)嵌入彈性介質,且受軸向載荷作用下的結構穩定性分析。文中以Eringen非局部彈性理論解釋微小尺度效應,呈現基於RMVT非局部TBT的強形公式及其相關可能的邊界條件。SWCNT及其周圍彈性介質之間的相互作用則以Pasternak基礎模型模擬。應用微分擬合法求得,在不同邊界條件之嵌入式SWCNT的臨界載重參數,其中np佈點數選擇使用np階Chebyshev多項式的根作為佈點位置。文中亦進行RMVT非局部TBT的結果與虛位移(PVD)原理非局部TBT之結果相互比較,討論一些重要的效應對嵌入式SWCNT臨界載重參數的影響,例如不同的邊界條件、Winkler勁度和剪切模數的基礎、外樣比及非局部參數。
On the basis of Reissner’s mixed variational theory (RMVT), a nonlocal Timoshenko beam theory (TBT) is developed for the stability analysis of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium, with various boundary conditions and under axial loads. Eringen’s nonlocal elasticity theory is used to account for the small length scale effect. The strong formulations of the RMVT- based nonlocal TBT and its associated possible boundary conditions are presented. The interaction between the SWCNT and its surrounding elastic medium is simulated using the Pasternak foundation models. The critical load parameters of the embedded SWCNT with different boundary conditions are obtained using the differential quadrature (DQ) method, in which the locations of np sampling nodes are selected as the roots of np-order Chebyshev polynomials.
目錄

摘要 I
Abstract II
誌謝 VII
表目錄 IX
圖目錄 X
第1章 緒論 1
第2章 RMVT局部Timoshenko梁理論 5
2.1 場量主變數假設 5
2.2 Euler-Lagrange方程式 6
第3章 RMVT非局部Timoshenko梁理論 9
3.1 非局部之基本組成關係 9
3.2 Euler-Lagrange方程式 9
第4章 PVD非局部Timoshenko梁理論 11
第5章 微分擬合法 13
第6章 應用 15
6.1 分析基於RMVT之非局部TBT 15
6.2 分析基於PVD之非局部TBT 19
6.3 分析非局部TBT解析解 21
第7章 範例說明 24
7.1 受軸向載重且無彈性支承之非局部梁 24
7.2 受軸向載重且具或不具彈性支承之SWCNT 25
7.3模擬與討論 27
第8章 結論 28
參考文獻 29
參考文獻

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
[2] K. M. Liew, Z. X. Lei and L. W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, Compos. Struct., 120 (2015) 90-97.
[3] S. Brischetto and E. Carrera, Classical and refined shell models for the analysis of nano-reinforced structures, Int. J. Mech. Sci., 55 (2012) 104-117.
[4] S. Brischetto and E. Carrera, Analysis of nano-reinforced layered plates via classical and refined two-dimensional theories, Multidisc. Model. Mater. Struct., 8 (2012) 4-31.
[5] Q. Wang and K. M. Liew, Molecular mechanics modeling for properties of carbon nanotubes, J. Appl. Phys., 103 (2008) 046103.
[6] Q. Wang, Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes, Int. J. Solids Struct., 41 (2004) 5451-5461.
[7] A. C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., 10 (1972) 1-16.
[8] A. C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York (2002).
[9] A. C. Eringen and D. G. B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., 10 (1972) 233-248.
[10] R. F. Gibson, E. O. Ayorinde and Y. F. Wen, Vibrations of carbon nanotubes and their composites: A review, Compos. Sci. Technol., 67 (2007) 1-28.
[11] J. N. Reddy and S. D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys., 103 (2008) 023511.
[12] Y. Y. Zhang, C. M. Wang, W. H. Duan, Y. Xiang and Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes, Nanotechnol. 20 (2009) 395707.
[13] B. Arash and Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Comput. Mater. Sci., 51 (2012) 303-313.
[14] J. N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., 45 (2007) 288-307.
[15] J. N. Reddy, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, Int. J. Eng. Sci., 48 (2010) 1507-1518.
[16] C. M. Wang, S. Kitipornchai, C. W. Lim and M. Eisenberger, Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134 (2008) 475-481.
[17] C. M. Wang, Y. Y. Zhang, S. S. Ramesh and S. Kitipornchai, Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory, J. Phys. D: Appl. Phys. 39 (2006) 3904-3909.
[18] Q. Wang and V. K. Varadan, Stability analysis of carbon nanotubes via continuum models, Smart Mater. Struct., 14 (2005) 281-286.
[19] Y. Y. Zhang, C. M. Wang and N. Challamel, Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model, J. Eng. Mech., 136 (2010) 562-574.
[20] Q. Wang, K. M. Liew and W. H. Duan, Modeling of the mechanical instability of carbon nanotubes, Carbon 46 (2008) 285-290.
[21] Y. Z. Sun and K. M. Liew, Effect of higher-order deformation gradients on buckling of single-walled carbon nanotubes, Compos. Struct. 109 (2014) 279-285.
[22] H. T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci. 52 (2012) 56-64.
[23] H. T. Thai and T. P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., 54 (2012) 58-66.
[24] M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E, 41 (2009) 1651-1655.
[25] M. Aydogdu, Longitudinal wave propagation in multiwalled carbon nanotubes, Compos. Struct. 107 (2014) 578-584.
[26] M. Aydogdu, Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mech. Res. Commun., 43 (2012) 34-40.
[27] C. Li, C. W. Lim, J. L. Yu and Q. C. Zeng, Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force, Int. J. Struct. Stab. Dyn., 11 (2011) 257-271.
[28] C. M. Wang, Y. Y. Zhang and S. Kitipornchai, Vibration of initially stressed micro- and nano-beams, Int. J. Struct. Stab. Dyn., 07 (2007) 555-570.
[29] X. Q. He, S. Kitipornchai and K. M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids, 53 (2005) 303-326.
[30] S. Kitipornchai, X. Q. He and K. M. Liew, Buckling analysis of triple-walled carbon nanotubes embedded in an elastic matrix, J. Appl. Phys., 97 (2005) 114318.
[31] K. M. Liew, X. Q. He and S. Kitipornchai, Buckling characteristics of embedded multi-walled carbon nanotubes, Proc. R. Soc. A, 461 (2005) 3785-3805.
[32] C. M. C. Roque, A. J. M. Ferreira and J. N. Reddy, Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, Int. J. Eng. Sci., 49 (2011) 976-984.
[33] J. W. Yan, K. M. Liew and L. H. He, Analysis of single-walled carbon nanotubes using the moving kriging interpolation, Comput. Methods Appl. Mech. Engrg., 229 (2012) 56-67.
[34] R. Ansari, R. Rajabiehfard, B. Arash, Thermal buckling of multiwalled carbon nanotubes using a semi-analytical finite element approach, J. Therm. Stresses, 34 (2011) 817-834.
[35] F. M. D. Sciarra, Finite element modelling of nonlocal beams, Physica E, 59 (2014) 144-149.
[36] M. A. Eltaher, S. A. Emam, F. E. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., 96 (2013) 82-88.
[37] R. Ansari, S. Sahmani and H. Rouhi, Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique, Comput. Mater. Sci. 50 (2011) 3050-3055.
[38] T. Murmu and S. C. Pradhan, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E, 41 (2009) 1232-1239.
[39] S. C. Pradhan and G. K. Reddy, Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM, Comput. Mater. Sci., 50 (2011) 1052-1056.
[40] C. M. Wang, Y. Y. Zhang, Y. Xiang and J. N. Reddy, Recent studies on buckling of carbon nanotubes, Appl. Mech. Rev., 63 (2010) 030804.
[41] H. Shima, Buckling of carbon nanotubes: a state of the art review, Mater. 5 (2012) 47-84.
[42] E. Reissner, On a certain mixed variational theory and a proposal application, Int. J. Numer. Methods Eng., 20 (1984) 1366-1368.
[43] E. Reissner, On a mixed variational theorem and on a shear deformable plate theory, Int. J. Numer .Methods Eng., 23 (1986) 193-198.
[44] E. Carrera, An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Compos. Struct., 50 (2000) 183-198.
[45] E. Carrera, Developments, ideas, and evaluations based upon Reissner’s mixed variational theorem in the modeling of multilayered plates and shells, Appl. Mech. Rev., 54 (2001) 301-329.
[46] E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks, Arch. Comput. Methods Eng., 10 (2003) 215-296.
[47] E. Carrera and A. Ciuffreda, Bending of composites and sandwich plates subject to localized lateral loadings: A comparison of various theories, Compos. Struct., 68 (2005) 185-202.
[48] E. Carrera and A. Ciuffreda, A unified formulation to assess theories of multilayered plates for various bending problems, Compos. Struct., 69 (2005) 271-293.
[49] C. P. Wu and H. Y. Li, The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates, Compos. Struct., 92 (2010) 2476-2496.
[50] C. P. Wu and H. Y. Li, RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, CMC-Comput. Mater. Continua, 19 (2010) 155-198.
[51] C. P. Wu and H. Y. Li, An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions, CMC-Comput. Mater. Continua, 34 (2013) 27-62.
[52] C. P. Wu and H. Y. Li, RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions, Compos. Struct. 100 (2013) 592-608.
[53] C. P. Wu and S. W. Yang, A semi-analytical element-free Galerkin method for the 3D free vibration analysis of multilayered FGM circular hollow cylinders, J. Intell. Mater. Syst. Struct., 22 (2011) 1993-2007.
[54] C. P. Wu and W. C. Li, Quasi-3D stability and vibration analyses of sandwich piezoelectric plates with an embedded CNT-reinforced composite core, Int. J. Struct. Stab. Dyn., (2015) in press.
[55] C. P. Wu and W. W. Lai, Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions, Compos. Struct. 122 (2015) 390-404.
[56] Y. M. Wang, S. M. Chen and C. P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation, Comput. Mech. 45 (2010) 585-606.
[57] C. M. Chen, C. P. Wu and Y. M. Wang, A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love plates, Comput. Mech. 47 (2011) 425-453.
[58] G. Cowper, The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33 (1966) 335-340.
[59] Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98 (2005) 124301.
[60] Q. Wang and C. Wang, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnol. 18 (2007) 075702.
[61] C. W. Bert and M. Malik, Differential quadrature: a powerful new technique for analysis of composite structures. Compos. Struct. 39 (1997) 179-189.
[62] H. Du, M. Lim and R. Lin, Application of generalized differential quadrature method to structural problems. Int. J. Numer. Methods Eng. 37 (1994) 1881-1896.
[63] C. P. Wu and C. Y. Lee, Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. Int. J. Mech. Sci. 43 (2001) 1853-1869.
[64] C. Li and T. W. Chou, Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech. Mater. 36 (2004) 1047-1055.
[65] R. C. Batra and A. Sears, Continuum models of multi-walled carbon nanotubes. Int. J. Solids Struct. 44 (2007) 7577-7596.
[66] A. Sears and R. C. Batra, Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys. Rev. B 69 (2004) 235406.
[67] M. J. Buehler, Y. Kong and H. Gao, Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126 (2004) 245-249.
[68] A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu and M. N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43 (2006) 6832-6854.
[69] N. Hu, K. Nunoya, D. Pan, T. Okabe and H. Fukunaga, Prediction of buckling characteristics of carbon nanotubes. Int. J. Solids Struct. 44 (2007) 6535-6550.
[70] S. Brischetto, A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes. Compos. Part B. 61 (2014) 222-228.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top