跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 11:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁彬勝
研究生(外文):Voong, Bin-Sheng
論文名稱:基於影像系統與慣性測量單元之標記導航四旋翼機的視覺伺服最佳控制
論文名稱(外文):Visual Servoing with LQG Control of a Marker Navigation Quadcopter using Camera System and Inertial Measurement Unit
指導教授:鄭泗東
指導教授(外文):Cheng, Stone
口試委員:陳宗麟鄭雲謙鄭泗東
口試委員(外文):Tsung-Lin ChenYun-Chien ChengStone Cheng
口試日期:2016-03-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:75
中文關鍵詞:AR.Drone四旋翼機視覺伺服LQG最佳控制PD控制ROS
外文關鍵詞:AR.Dronequadcoptervisual servoingLQG optimal controlPD controlROS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,有關微型飛行器(Micro Aerial Vehicle)的研究日益增加。四旋翼機是一種擁有四個旋翼的飛行器。它能夠提供穩定的特技飛行,並且能航行至地面機器人或人類無法到達的地方以執行一些高難度以及危險任務或工作,譬如農場監測和地雷檢測等等。

本研究的目標是開發出一套控制系統以讓Parrot AR.Drone 2.0四旋翼機進行各種視覺伺服任務,例如基於地面標記以及置於底部Raspberry Pi攝影機模組的影像回饋之起飛、停懸、追蹤以及降落等動作。這種可以執行上述任務的自主飛行系統將可以為後續的研究帶來更多可能性,例如利用裝在飛行器上的機械手臂以抓取地面上的物體,以無線方式給地面上的傳感器充電,無需人工干預地自動降落於停靠站或充電站以延長其飛行時間以及進行空中監視等等。該自主飛行系統採用一張信用卡大小的單板電腦Raspberry Pi 2並搭配Robot Operating System(ROS)作業系統來實現本論文所提出的各種演算法。本論文提出了LQG(Linear-Quadratic-Gaussian)最佳控制法作為飛行器的橫軸(lateral axis) 與縱軸(longitudinal axis)速率的控制且使用PD(Proportional-Derivative)控制法作為飛行器的橫軸、縱軸與垂直軸(vertical axis)位置以及偏擺(yaw)方向的控制。在設計控制器前,本論文先對AR.Drone 2.0進行系統辨識(System Identification),然後使用MATLAB軟體來對系統進行分析與設計控制器,最後再使用Simulink模擬設計好的控制器。本論文描述了四旋翼機控制器的設計以及基於開源電腦視覺(OpenCV)的標記(Visual Marker)偵測方法,並且把Raspberry Pi 2搭載於AR.Drone四旋翼飛行器上,以進行各種視覺伺服任務的測試。
In recent years, there is an increased interest on the research of Micro Aerial Vehicles (MAVs). Quadcopter is a class of four-rotored aerial vehicles which has the capabilities to provide stable acrobatic flight, navigate into places that ground robots or human cannot reach and perform tasks which are difficult or dangerous for human being such as agricultural surveillance and explosive landmines detection.
The goal of this thesis is to present control systems for the AR.Drone 2.0 quadcopter by Parrot to perform visual servoing tasks such as take-off, hovering, following and landing based on the vision feedback from Raspberry Pi camera module attached to its bottom and a visual marker placed on the ground. By enabling an autonomous MAV to perform the aforementioned tasks, it will open a lot of posibilities such as following or picking up ground objects, charging wireless ground sensors, landing on docking or charging station without human intervention to increase its flight time, aerial monitoring and inspection. All the algorithms of this system is implemented on a single-board computer, Raspberry Pi 2 which runs the Robot Operating System (ROS). This thesis has proposed the LQG (Linear-Quadratic-Gaussian) controller for the velocity control of quadcopter’s lateral and longitudinal movement while using PD (Proportional-Derivative) controller for the position control of quadcopter’s lateral, longitudinal, vertical movement and also its yaw rotation control. This thesis has used System Identification method to obtain the system model of AR.Drone 2.0. Then MATLAB software is utilized to analyze and design the controllers and finally the designed controllers are simulated in Simulink. This thesis describes the development, testing and implementation of a system which uses Raspberry Pi 2 as onboard computer to a real quadcopter, AR.Drone 2.0. The system can perform visual marker detection by using Open Source Computer Vision (OpenCV) library for image processing, and also perform the automated visual servoing tasks.
摘要 i
Abstract iii
誌謝 v
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
1-1 Background 1
1-2 Fundamental Concepts 3
1-2-1 Quadcopter Types and Movements 3
1-2-2 Modeling of Quadcopter 6
1-2-2-1 Quadcopter Kinematics 7
1-2-2-2 Quadcopter Dynamics 9
1-3 Literature Review 13
1-4 Purpose and Motivation 14
1-5 Thesis Outline 14
Chapter 2 System Descriptions 15
2-1 Quadcopter Platform - AR.Drone 2.0 15
2-1-1 Flight Tests 18
2-2 Single-Board Computer 22
2-2-1 Raspberry Pi 2 23
2-2-2 Camera Module 24
2-3 Robot Operating System (ROS) 24
2-4 System Architecture 26
2-5 Experimental Setup 26
Chapter 3 System Identification 28
3-1 ARX (Autoregressive with Exogenous inputs) Model 28
3-2 System Identification Process 29
3-3 Results and Model Validation 31
Chapter 4 Pose Estimation Approach 38
4-1 ArUco Marker 38
4-1-1 Introduction 38
4-1-2 Marker Detection Process 40
4-1-3 Adaptive Thresholding and Gaussian Blur Filter 42
4-1-4 Perspective Projection and Camera Calibration 45
4-1-5 Marker Pose relative to Camera 50
4-2 Vision-Based Quadcopter Pose Estimation Algorithm 51
4-2-1 Camera Pose Relative to Marker 51
4-2-2 Utilization of Inertial Measurement Unit (IMU) Data 51
Chapter 5 Visual Servoing 54
5-1 Introduction 54
5-2 Control Algorithm 55
5-2-1 Discrete Linear-Quadratic-Gaussian (LQG) Control 55
3-2-2 State Estimation with Discrete Kalman Filter 57
3-2-3 Discrete Proportional-Integral-Derivative (PID) Control 58
3-3 Controllers Design and Simulations 59
5-3-1 Lateral and Longitudinal Movement 60
5-3-2 Yaw Rotation and Vertical Movement 64
5-3-3 Overall Simulation 67
5-4 State Estimation with Kalman Filter 67
5-5 Practical Implementation of Controllers 69
Chapter 6 Experimental Results 71
6-1 Hovering 71
6-2 Following 72
Chapter 7 Conclusions and Future Works 74
Bibliography 75
1. Anusha Gururaj, Jamkhandi , Saee Tulpule , Ashvini Chaturvedi and Jean-Noel Charvet. “Controlling the Position and Velocity in Space of the Quad-Rotor UAV AR.Drone Using Predictive Functional Control and Image Processing in Open CV”, 2012 International Conference on Signal Processing Systems (ICSPS 2012).
2. Chi-Tinh Dang, Hoang-The Pham, Thanh-Binh Pham and Nguyen-Vu Truong, “Vision Based Ground Object Tracking Using AR.Drone Quadrotor”, 2013 International Conference on Control, Automation and Information Sciences (ICCAIS).
3. JeongWoon Kim•David Hyunchul Shim, James R. Morrison, “Tablet PC-based Visual Target-Following System for Quadrotors”, J Intell Robot Syst (2014).
4. Karl Engelbert Wenzel, Andreas Masselli, Andreas Zell, “Automatic Take Off, Tracking and Landing of a Miniature UAV on a Moving Carrier Vehicle”, J Intell Robot Syst (2011).
5. Karl E. Wenzel, Paul Rosset, Andreas Zell, “Low-Cost Visual Tracking of a Landing Place and Hovering Flight Control with a Microcontroller”, J Intell Robot Syst (2010).
6. Tiago Gomes Carreira, “Quadcopter Automatic Landing on a Docking Station”, Instituto Superior Tecnico, October 2013.
7. Patrick Benavidez, Josue Lambert, Aldo Jaimes And Mo Jamshidi, “Landing of an AR.Drone 2.0 Quadcopter on a Mobile Base using Fuzzy Logic”, International Journal of Complex Systems – Computing, Sensing and Control (2013).
8. Andrew Zulu, Samuel John, “A Review of Control Algorithms for Autonomous Quadrotors”, Open Journal of Applied Sciences, 4, 547-556 (2014).
9. Miguel A. Olivares-Mendez, Ivan F. Mondragon, Pascual Campoy, Luis Mejias, Carol Martinez, “Aerial Object Following Using Visual Fuzzy Servoing”, Workshop on Research, Development and Education on Unmanned Aerial Systems RED-UAS 2011, At Seville, Spain.
10. Dr Jeffrey W. Tweedale, “Fuzzy Control Loop in an Autonomous Landing System for Unmanned Air Vehicles”, WCCI 2012 IEEE World Congress on Computational Intelligence.
11. Jacobo Jiménez Lugo, Andreas Zell, “Framework for Autonomous On-board Navigation with the AR.Drone”, J Intell Robot Syst (2014).
12. Tomas Krajnik, Vojtech Vonasek, Daniel Fiser, and Jan Faigl, “AR-Drone as a Platform for Robotic Research and Education”, Research and Education in Robotics - EUROBOT 2011.
13. Stephane Piskorski, Nicolas Brulez, Pierre Eline, Frederic D’Haeyer, “AR.Drone Developer Guide SDK 2.0”, December 11, 2012.
14. Gerard Martin, “Modelling and Control of the Parrot AR.Drone”, Final Project Report 2012, SEIT, UNSW Canberra.
15. Pierre-Jean Bristeau, François Callou, David Vissière, Nicolas Petit, “The Navigation and Control technology inside the AR.Drone micro UAV”, 18th IFAC World Congress, Milano (Italy) August 28 - September 2, 2011.
16. Charles Lucas, Sebastian Elbaum, Javier Darsie, Carrick Detweiler and Charles Nugent, “Virtual Cage for Cost-Effective MAV Systems and Algorithms Prototyping”, CSE Technical Report, TR-UNL-CSE-2011-0015. 2011.
17. Martin Saska, Tomas Krajnik, Libor Preucil, “Cooperative micro UAV-UGV autonomous indoor surveillance”, Systems, Signals and Devices (SSD), 2012 9th International Multi-Conference.
18. Roman Bartak, Andrej Hrasko, David Obdrzalek, “On Autonomous Landing of AR.Drone: Hands-on Experience”, Proceedings of the 27th, International Florida Artificial Intelligence Research Society Conference.
19. “ardrone_autonomy : A ROS Driver for ARDrone 1.0 & 2.0”
https://github.com/AutonomyLab/ardrone_autonomy
20. Aplicaciones de la Visión Artificial from Universidad de Córdoba, “ArUco: a minimal library for Augmented Reality applications based on OpenCV”, http://www.uco.es/investiga/grupos/ava/node/26
21. Andrew Gibiansky, “Quadcopter Dynamics and Simulation”, November 23, 2012 http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
22. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010.
23. Daniel Lélis Baggio, Shervin Emami, David Millán Escrivá, Khvedchenia Ievgen, Naureen Mahmood, Jason Saragih, Roy Shilkrot, Mastering OpenCV with Practical Computer Vision Projects, Packt Publishing, December 2012.
24. “How to create markers for ARUCO?”
http://iplimage.com/blog/create-markers-aruco/
25. Aaron Martinez, Enrique Fernandez, Learning ROS for Robotics Programming, Packt Publishing, September 2013.
26. Gary Bradski, Adrian Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, O'Reilly Media, 1st edition, October, 2008.
27. D. I. Montufar, F. Muñoz, E. S. Espinoza, O. Garcia and S. Salazar, “Multi-UAV Testbed for Aerial Manipulation Applications”, International Conference on Unmanned Aircraft Systems (ICUAS), 2014.
28. Inkyu Sa, Peter Corke, “System Identification, Estimation and Control for a Cost Effective Open-Source Quadcopter”, IEEE International Conference on Robotics and Automation (2012).
29. William Selby, Peter Corke, Daniela Rus, “Autonomous Aerial Navigation and Tracking of Marine Animals”, Proceedings of Australasian Conference on Robotics and Automation, 7-9 Dec 2011.
30. Min-Fan Ricky Lee, Nguyen The Hung, “Aerial Visual Aid System for Ground Mobile Robot Behavior Controller in Joint Operation”, International Conference on Fuzzy Theory and Its Application (2013).
31. Miguel A. Olivares-Mendez, Somasundar Kannan, and Holger Voos, “V-REP & ROS Testbed for Design, Test, and Tuning of a Quadrotor Vision Based Fuzzy Control System for Autonomous Landing”, International Micro Air Vehicle Conference (2014).
32. J. Pestana, J. L. Sanchez-Lopez, I. Mellado-Bataller, Changhong Fu, P. Campoy, “AR Drone Identification and Navigation Control at CVG-UPM”, XXXIII Jornadas de Automática (September 2012).
33. Charles L. Phillips, Troy Nagle, Aranya Chakrabortty, Digital Control System Analysis and Design, Pearson, 4th Edition, 2015.
34. Dieter Fox, Sebastian Thrun, Wolfram Burgard, Probabilistic Robotics, The MIT Press, 2005.
35. Phil Kim, Lynn Huh, Kalman Filter for Beginners: with MATLAB Examples, CreateSpace Independent Publishing Platform, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top