跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱良
研究生(外文):Chen, Yu-Liang
論文名稱:可撓式基材上金奈米結構之製備與其在生物感測及超級電容之應用
論文名稱(外文):Au Nanostructures on Flexible Substrate: Fabrication and Applications in Biosensor and Supercapacito
指導教授:裘性天李紫原
指導教授(外文):Chiu, Hsin-TienLee, Chi-Young
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:85
中文關鍵詞:電化學可撓式生物感測超級電容
外文關鍵詞:Auelectrochemistryflexiblebiosensorsupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們在可撓式基材上製備並研究金奈米結構的成長與其在生物感測及超級電容的應用。論文架構及內容分成三大部。
首先,在可撓式塑膠基材(聚對苯二甲酸乙二酯)以電化學電鍍沉積金奈米結構,其結構包含奈米尖錐結構、奈米珊瑚結構、奈米片狀結構及奈米線結構。藉由調控電化學電鍍參數,探討金奈米結構的成長並討論其成長機制。上述所合成的金奈米結構中,以金奈米線結構具有最好的克真實表面積值(26100 cm2/g),這是由於一維奈米金線結構具有很高的長寬比。進一步,將上述所合成的金奈米材料當作電極,分別應用於生物感測及超級電容。
在生物感測應用中,將所合成的金奈米材料作為感測電極,以電化學阻抗分析法偵測人類凝血酶的濃度作為生物感測應用的實驗。檢測凝血酶的方法是利用凝血酶結合適體與凝血酶具有很好的鍵結親和力,可以大幅增加感測電極的選擇性和靈敏性。因此,先將凝血酶適體利用硫金鍵的結合修飾於所合成的各種金奈米材料上。然後,利用電化學阻抗分析法檢測所修飾的各種金奈米材料電極於低濃度範圍(1 - 50 pM)的凝血酶其阻抗值的變化。其中,以金奈米線結構具有最好的凝血酶感測表現(1130 pM-1 cm-2)。由於金奈米線結構具有最大的真實表面積,因此在生物感測上具有好的感測靈敏性、選擇性和穩定性。
在超級電容應用中,是利用電化學沉積合成二氧化錳與金奈米線的複合材料作為超級電容電極。此奈米複合材料的組成結構是一薄層二氧化錳(厚度: 5  80 nm)包覆於金奈米線結構上(長度: 10 - 20 μm, 直徑: 20 - 100 nm)。在電化學電容表現中,此電極具有高的克電容值(1130 F/g)、高的克能量密度(15 Wh/kg) 、高的克功率密度(20 kW/kg)以及好的穩定性 (充放電5000圈依然維持90%電容值)。最後,將此電極作固態電容元件並呈現出優異的電容表現。

In this thesis, we studied fabrication of Au nanostructures on flexible substrate and its applications in biosensor and supercapacitor. A facile fabrication of high density Au nanostructures including nanothorns (NTs), nanocorals (NCs), nanoslices (NSs), and nanowires (NWs) which were electrochemically grown on flexible plastic substrates of polyethylene terephthalate (PET). By adjusting the electroplating conditions, we proposed a growth mechanism of Au nanostructures. Among them, the specific real surface area (RSA) of the Au NWs is the highest one (26100 cm2/g). This is due to the high aspect ratio of the one-dimensional NW structure. Further, as-fabricated Au nanostructures on flexible substrate were employed and used as electrode in biosensor and supercapacitor applications. For biosensor application, a thrombin-binding aptamer was immobilized on the surfaces of the Au nanostructures to form highly sensitive electrochemical impedance spectroscopic (EIS) as biosensors for thrombin recognition. The binding of thrombin to the aptamer was monitored by EIS in the presence of [Fe(CN)6]3-/4-(aq). The protein (1 – 50 pM) was detected linearly by the Au nanostructures. Among them, the Au NWs exhibited excellent thrombin detection performances (1130  pM-1 cm-2). The biosensor provided high sensitivity, selectivity, and stability due to its high surface area. For supercapacitor application, electrodes composed of ultrathin MnO2 (thickness 5 - 80 nm) spines on Au NW stems (length 10 - 20 μm, diameter 20 - 100 nm) were electrochemically grown on flexible PET substrates. The electrodes demonstrated high specific capacitance, high specific energy value, high specific power value, and long-term stability. In Na2SO4(aq) (1 M), the maximum specific capacitance was determined to be 1130 F/g by cyclic voltammetry (CV, scan rate 2 mV/s) using a three-electrode system. From a galvanostatic (GV) charge/discharge test using a two-electrode system, a maximum capacitance 225 F/g (current density 1 A/g) was measured. Even at a high charge/discharge rate 50 A/g, the specific capacitance remained at an extremely high value 165 F/g. The flexible electrodes also exhibited a maximum specific energy 15 Wh/kg and a specific power 20 kW/kg at 50 A/g. After five thousand cycles at 10 A/g, 90% of the original capacitance was retained. A highly flexible solid-state device was also fabricated to reveal its supercapacitance performance.
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Applications of Au nanomaterials in electrochemical biosensors and energy storages 1
1.2.1 Introduction of electrochemical impedance spectroscopy (EIS) biosensors 1
1.2.2 Introduction of MnO2-based materials in supercapacitors 7
1.3 Synthetic strategies of Au nanostructures 9
1.3.1 Seed-mediated growth 9
1.3.2 Galvanic reaction 10
1.3.3 Lithographically patterned electrodeposition 11
1.3.4 Electrodeposition with hard templates or soft templates 12
1.3.5 Dealloying method 14
1.3.6 Comparison with synthetic strategies of Au nanostructures 15
1.4 Aim of thesis 15
1.5 References 17
Chapter 2 Electrochemical Fabrication of Au Nanostructures on Flexible Substrate 23
2.1 Introduction 23
2.2 Experimental section 25
2.2.1 Chemicals and instruments 25
2.2.2 Fabrication of nanostructured Au on flexible substrates 25
2.2.3 Real surface area measurement 27
2.3 Results and discussion 27
2.3.1 Adjusting synthesis of Au nanostructures on flexible substrate 27
2.3.2 Materials characterization of Au nanostructures on flexible substrates 32
2.3.3 Growth mechanism of Au nanostructures 36
2.3.4 Real surface areas of Au nanostructures 37
2.4 Conclusions 39
2.5 References 40
Chapter 3 Growth of Au Nanowires on Flexible Substrate for Highly Sensitive Biosensing: Detection of Thrombin as an Example 43
3.1 Introduction 43
3.2 Experimental section 44
3.2.1 Chemicals and instruments 44
3.2.2 Fabrication of nanostructured Au on flexible substrate 45
3.2.3 Modification of nanostructured Au on flexible substrate by TBAI and MCH 45
3.2.4 Electrochemical analyses of nanostructured Au on flexible substrate 46
3.3 Results and discussion 46
3.3.1 Fabrication of Au nanostructures on flexible substrates 46
3.3.2 Modification of nanostructured Au surfaces by thrombin aptamer 48
3.3.3 Detection of thrombin via electrochemical impedance spectroscopy 51
3.3.4 Selectivity of TBAI/MCH-modified Au electrodes toward other proteins 53
3.4 Conclusions 55
3.5 References 57
Chapter 4 Nanosized MnO2 Spines on Au Stems for High-Performance Flexible Supercapacitor Electrodes 59
4.1 Introduction 59
4.2 Experimental section 60
4.2.1 Chemicals and instruments 60
4.2.2 Fabrication of Au nanowires (NWs) on flexible substrate 61
4.2.3 Fabrication of nanosized MnO2 spines on Au stems (NMSAS) on flexible substrate 61
4.2.4 Electrochemical capacitance analyses 62
4.2.5 Fabrication of solid-state supercapacitor 62
4.2.6 Calculations of electrochemical capacitance performances 62
4.3 Results and discussion 63
4.3.1 Fabrication and charaterizations of nanosized MnO2 spines on Au stems (NMSAS) on flexible substrate 63
4.3.2 CV and supercapacitance performance of NMSAS on flexible substrates 69
4.3.3 Estimation of specific capacitances by using three-electrode and two-electrode systems. 71
4.3.4 GV and supercapacitance performance of NMSAS on flexible substrates 73
4.3.5 Solid-state supercapacitor performance of NMSAS on flexible substrates 75
4.4 Conclusions 78
4.5 References 80
Chapter 5 Conclusions 84

1. Mannelli, I.; Marco, M. P. Anal. Bioanal. Chem. 2010, 398, 2451.
2. Yuan, Q.; Wang, X. Nanoscale 2010, 2, 2328.
3. Guo, S.; Wang, E. Nano Today 2011, 6, 240.
4. Arvizo, R. R.; Bhattacharyya, S.; Kudgus, R. A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Chem. Soc. Rev. 2012, 41, 2943.
5. Zhang, H.; Jin, M.; Xia, Y. Angew. Chem. Int. Ed. 2012, 51, 7656.
6. Zhang, L.; Niu, W.; Xu, G. Nano Today 2012, 7, 586.
7. Wu, B.; Zheng, N. Nano Today 2013, 8, 168.
8. Huang, X.; Neretina, S.; El-Sayed, M. A. Adv. Mater. 2009, 21, 4880.
9. Van de Broek, B.; Devoogdt, N.; D’Hollander, A.; Gijs, H.-L.; Jans, K.; Lagae, L.; Muyldermans, S.; Maes, G.; Borghs, G. ACS Nano 2011, 5, 4319.
10. Chen, D.; Luo, Z.; Li, N.; Lee, J. Y.; Xie, J.; Lu, J. Adv. Funct. Mater. 2013, 23, 4324.
11. Voliani, V.; Signore, G.; Vittorio, O.; Faraci, P.; Luin, S.; Perez-Prieto, J.; Beltram, F. J. Mater. Chem. B 2013, 1, 4225.
12. Choi, D.; Choi, Y.; Hong, S.; Kang, T.; Lee, L. P. Small 2010, 6, 1741.
13. Yang, M.; Alvarez-Puebla, R. n.; Kim, H.-S.; Aldeanueva-Potel, P.; Liz-Marzán, L. M.; Kotov, N. A. Nano Lett. 2010, 10, 4013.
14. Zhu, Z.; Meng, H.; Liu, W.; Liu, X.; Gong, J.; Qiu, X.; Jiang, L.; Wang, D.; Tang, Z. Angew. Chem. Int. Ed. 2011, 123, 1631.
15. Liu, Z.; Hou, W.; Pavaskar, P.; Aykol, M.; Cronin, S. B. Nano Lett. 2011, 11, 1111.
16. Chang, S.; Li, Q.; Xiao, X.; Wong, K. Y.; Chen, T. Energy Environ. Sci. 2012, 5, 9444.
17. Mubeen, S.; Lee, J.; Singh, N.; Kramer, S.; Stucky, G. D.; Moskovits, M. Nat. Nanotechnol. 2013, 8, 247.
18. Ksar, F. a.; Ramos, L.; Keita, B.; Nadjo, L.; Beaunier, P.; Remita, H. Chem. Mater. 2009, 21, 3677.
19. Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Science 2010, 327, 319.
20. Tung, S.-P.; Huang, T.-K.; Lee, C.-Y.; Chiu, H.-T. RSC Advances 2012, 2, 1068.
21. Drummond, T. G.; Hill, M. G.; Barton, J. K. Nat. Biotech. 2003, 21, 1192.
22. Yogeswaran, U.; Chen, S.-M. Sensors 2008, 8, 290.
23. Luo, X.; Morrin, A.; Killard, A. J.; Smyth, M. R. Electroanalysis 2006, 18, 319.
24. Cheng, T.-M.; Huang, T.-K.; Lin, H.-K.; Tung, S.-P.; Chen, Y.-L.; Lee, C.-Y.; Chiu, H.-T. ACS Appl. Mater. Interfaces 2010, 2, 2773.
25. Liu, N.; Prall, B. S.; Klimov, V. I. J. Am. Chem. Soc. 2006, 128, 15362.
26. Kuwauchi, Y.; Yoshida, H.; Akita, T.; Haruta, M.; Takeda, S. Angew. Chem. Int. Ed. 2012, 51, 7729.
27. Thiyagarajan, P.; Ahn, H.-J.; Lee, J.-S.; Yoon, J.-C.; Jang, J.-H. Small 2013, 9, 2341.
28. Lu, Y.-C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. J. Am. Chem. Soc. 2010, 132, 12170.
29. Chen, A.; Chatterjee, S. Chem. Soc. Rev. 2013, 42, 5425.
30. Cao, R.-G.; Zhu, B.; Li, J.; Xu, D. Electrochem. Commun. 2009, 11, 1815.
31. Wang, Y.; Li, C.; Li, X.; Li, Y.; Kraatz, H.-B. Anal. Chem. 2008, 80, 2255.
32. Lee, S.-J.; Anandan, V.; Zhang, G. Biosens. Bioelectron. 2008, 23, 1117.
33. Geng, P.; Zhang, X.; Meng, W.; Wang, Q.; Zhang, W.; Jin, L.; Feng, Z.; Wu, Z. Electrochim. Acta 2008, 53, 4663.
34. Guan, J.-G.; Miao, Y.-Q.; Zhang, Q.-J. J. Biosci. Bioeng. 2004, 97, 219.
35. Villalonga, R.; Villalonga, M. L.; Diez, P.; Pingarron, J. M. J. Mater. Chem. 2011, 21, 12858.
36. Chen, C.-S.; Chang, K.-N.; Chen, Y.-H.; Lee, C.-K.; Lee, B. Y.-J.; Lee, A. S.-Y. Biosens. Bioelectron. 2011, 26, 3072.
37. Labib, M.; Zamay, A. S.; Muharemagic, D.; Chechik, A. V.; Bell, J. C.; Berezovski, M. V. Anal. Chem. 2012, 84, 1813.
38. Daniels, J. S.; Pourmand, N. Electroanalysis 2007, 19, 1239.
39. Suni, I. I. TrAC, Trends Anal. Chem. 2008, 27, 604.
40. Lisdat, F.; Schäfer, D. Anal. Bioanal. Chem. 2008, 391, 1555.
41. Randles, J. E. B. Discuss. Faraday Soc. 1947, 1, 11.
42. Plowman, B. J.; Bhargava, S. K., O’Mullane, A. P. Analyst, 2011, 136, 5107.
43. Vidotti, M.; Carvalhal, R. F.; Mendes, R. K.; Ferreira, D. C. M.; Kubota, L. T. J. Braz. Chem. Soc. 2011, 22, 3.
44. Miller, J. R.; Simon, P. Science 2008, 321, 651.
45. Simon, P.; Gogotsi, Y. Nature Mater. 2008, 7, 845.
46. Nishide, H.; Oyaizu, K. Science 2008, 319, 737.
47. Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
48. Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797.
49. Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Nano Lett. 2009, 9, 1872.
50. Zhang, L.-L.; Zhao, X.-S. Chem. Soc. Rev. 2009, 38, 2520.
51. Kady, M. F. E.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335, 1326.
52. Hu, C.-C.; Chang, K.-H.; Lin, M.-C.; Wu, Y.-T. Nano Lett. 2006, 6, 2690.
53. Seo, E.; Lee, T.; Lee, K.-T.; Song, H.-K.; Kim, B.-S. J. Mater. Chem. 2012, 22, 11598.
54. Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y.; Xie, S.; Tong, Y. Energy Environ. Sci. 2011, 4, 2915.
55. Roberts, A. J.; Slade, R. C. T. J. Mater. Chem. 2010, 20, 3221.
56. Xia, X.-H.; Tu, J.-P.; Mai, Y.-J.; Wang, X.-L.; Gu, C.-D.; Zhao, X.-B. J. Mater. Chem. 2011, 21, 9319.
57. Yuan, C.; Yang, L.; Hou, L.; Shen, L.; Zhang, F.; Li, D.; Zhang, X. J. Mater. Chem. 2011, 21, 18183.
58. Liang, K.; Tang, X.; Hu, W. J. Mater. Chem. 2012, 22, 11062.
59. Wang, B.; Chen, J. S.; Wang, Z.; Madhavi, S.; Lou, X. W. Adv. Energy Mater. 2012, 2, 1188.
60. Boukhalfa, S.; Evanoff, K.; Yushin, G. Energy Environ. Sci. 2012, 5, 6872.
61. Saravanakumar, B.; Purushothaman, K. K.; Muralidharan, G. ACS Appl. Mater. Interfaces 2012, 4, 4484.
62. Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Nano Lett. 2012, 12, 1690.
63. Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. J. Mater. Chem. 2012, 22, 19161.
64. Wang, Y.-G.; Li, H.-Q.; Xia, Y.-Y. Adv. Mater. 2006, 18, 2619.
65. Biswas, S.; Drzal, L. T. Chem. Mater. 2010, 22, 5667.
66. Snook, G. A.; Kao P.; Best, A. S. J. Power Sources 2011, 196, 1.
67. Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan,C.; Lou, X.-W. Adv. Mater. 2012, 24, 5166.
68. Lokhande, C. D.; Dubal, D. P.; Joo, O.-S. Curr. Appl. Phys. 2011, 11, 255.
69. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Chem. Soc. Rev. 2011, 40, 1697.
70. De Guzman, R. N.; Awaluddin, A.; Shen, Y.-F.; Tian, Z. R.; Suib, S. L.; Ching, S.; O'Young, C.-L. Chem. Mater. 1995, 7, 1286.
71. Jiang, R.; Huang, T.; Liu, J.; Zhuang, J.; Yu, A. Electrochim. Acta 2009, 54, 3047.
72. Xue, T.; Xu, C.-L.; Zhao, D.-D.; Li, X.-H.; Li, H.-L. J. Power Sources 2007, 164, 953.
73. Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nat. Nanotechnol. 2011, 6, 232.
74. Li, Q.; Wang, Z.-L.; Li, G.-R.; Guo, R.; Ding, L.-X.; Tong, Y.-X. Nano Lett. 2012, 12, 3803.
75. Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. Nano Lett. 2011, 11, 2905.
76. Hu, L.; Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. ACS Nano 2011, 5, 8904.
77. Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Adv. Funct. Mater. 2011, 21, 2366.
78. Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. J. Phys. Chem. C 2009, 114, 658.
79. Cheng, Y.; Lu, S.; Zhang, H.; Varanasi, C.; V. Liu, J. Nano Lett. 2012, 12, 4206.
80. Chen, W.; Rakhi, R. B.; Hu, L.; Xie, X.; Cui, Y.; Alshareef, H. N. Nano Lett. 2011, 11, 5165.
81. Liu, R.; Lee, S.-B. J. Am. Chem. Soc. 2008, 130, 2942.
82. Liu, R.; Duay, J.; Lee, S.-B. ACS Nano 2010, 4, 4299.
83. Han, J.; Li, L.; Fang, P.; Guo, R. J. Phys. Chem. C 2012, 116, 15900.
84. Lu, X.; Zhai, T.; Zhang, X.; Shen, Y.; Yuan, L.; Hu, B.; Gong, L.; Chen, J.; Gao, Y.; Zhou, J.; Tong, Y.; Wang, Z.-L. Adv. Mater. 2012, 24, 938.
85. Yan, J.; Khoo, E.; Sumboja A.; Lee, P. S. ACS Nano 2010, 4, 4247.
86. Duay, J.; Gillette, E.; Liu, R.; Lee, S. B. Phys. Chem. Chem. Phys. 2012, 14, 3329.
87. Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. Adv. Mater. 2013, 25, 267.
88. Bao, L.; Zang, J.; Li, X. Nano Lett. 2011, 11, 1215.
89. Yan, W.; Kim, J. Y.; Xing, W.; Donavan, K. C.; Ayvazian, T.; Penner, R. M. Chem. Mater. 2012, 24, 2382.
90. Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648.
91. Wu, H.-L.; Chen, C.-H.; Huang, M. H. Chem. Mater. 2009, 21, 110.
92. Ha, T. H.; Koo, H. J.; Chung, B. H. J. Phys. Chem. C 2007, 111, 1123-1130
93. Lu, X.; Au, L.; McLellan, J.; Li, Z.-Y.; Marquez, M.; Xia, Y. Nano Lett. 2007, 7, 1764.
94. Huang, T.-K.; Chen, Y.-C.; Ko, H.-C.; Huang, H.-W.; Wang, C.-H.; Lin, H.-K.; Chen, F.-R.; Kai, J.-J.; Lee, C.-Y.; Chiu, H.-T. Langmuir 2008, 24, 5647.
95. Menke, E. J.; Thompson, M. A.; Xiang, C.; Yang, L. C.; Penner, R. M. Nat. Mater. 2006, 5, 914.
96. Bai, Y.; Yang, W.; Sun, Y.; Sun, C. Sens. Actuators. B. 2008, 134, 471.
97. Sahu, G.; Wang, K.; Gordon, S. W.; Zhoua, W.; Tarr, M. A. RSC Adv. 2012, 2, 3791.
98. Lee, Y.-J.; Lee, Y.; Oh, D.; Chen, T.; Ceder, G.; Belcher, A. M. Nano Lett. 2010, 10, 2433.
99. Yang, Y.-C.; Huang, T.-K.; Chen, Y.-L.; Mevellec, J.-Y.; Lefrant, S.; Lee, C.-Y.; Chiu, H.-T. J. Phys. Chem. C 2011, 115, 1932.
100. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Nature 2001, 410, 450.
101. Liu, L.; Lee, W.; Huang, Z.; Scholz, R.; Gösele, U. Nanotechnology 2008, 19, 335604.
102. Tabakman, S. M.; Chen, Z.; Casalongue, H. S.; Wang, H.; Dai, H. Small 2011, 7, 499.
103. Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W. ACS Appl. Mater. Interfaces 2011, 3, 4075.
104. Gowda, S. R.; Reddy, A. Leela Mohana; Zhan, X.; Jafry, H. R.; Ajayan, P. M. Nano Lett. 2012, 12, 1198.
105. Li, L.; Yu, Z.; Hu, W.; Chang, C.-H.; Chen, Q.; Pei, Q. Adv. Mater. 2011, 23, 5563.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊