跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韓佳霖
研究生(外文):Chia-LinHan
論文名稱:Cav1, YAP 和 Rac 在 Ha-RasV12 誘導 MDCK 細胞形成多層細胞團塊中所扮演的角色
論文名稱(外文):The role of Cav1, YAP and Rac in Ha-RasV12-induced multilayer cellular aggregates of Madin-Darby canine kidney cells
指導教授:湯銘哲湯銘哲引用關係
指導教授(外文):Ming-Jer Tang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:細胞團塊YAPCav1Rac
外文關鍵詞:multilayer cellular aggregationYAPCav1Rac
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在生物體中為了保持上皮組織的完整性及維持單層上皮細胞的恆定性有兩個假說:contact inhibition所造成的生長停止和擁擠所造成的cell extrusion,目前研究有報導指出這倆個機制的失調會造成多層細胞團塊的產生。在這篇研究我們利用可由IPTG所誘導致癌基因Ha-RasV12表現的MK4細胞發現有多層細胞團塊的產生,而在近期研究發現Hippo-YAP pathway在調控contact inhibition中扮演很重要的角色,在這篇研究我們發現Ha-RasV12會促使YAP入核及表現YAP的下游基因,但是在Ha-RasV12的促使下也會造成LATS1和MST1的表現,暗示著我們Hippo pathway不參與在Ha-RasV12所促使的YAP活化,接著我們發現抑制p-ERK或actomyosin cytoskeleton可以阻止Ha-RasV12所促使的YAP激活,使用了YAP的抑制劑卻無法阻止Ha-RasV12所促使多層細胞團塊的產生,暗示著我們可能有其他分子的參與,Cav1的過度表達可以抑制Ha-RasV12所促使的細胞癌化,因此我們發現Cav1的過度表達也可以抑制Ha-RasV12所促使的多層細胞團塊的產生及YAP活化,然而Cav1的基因敲落只造成YAP激活而沒有產生多層細胞團塊,而跟cell extrusion有關的蛋白Rac和RhoA在Ha-RasV12的誘導下而上升,使用Rac的抑制劑可以阻止Ha-RasV12所促使多層細胞團塊的產生相反地ROCK的抑制劑在正常的細胞會造成多層細胞團塊,抑制p-ERK及Cav1的過度表達也可以阻止Ha-RasV12所促使的Rac活化,最後也發現Rac的過度表達在正常細胞會造成多層細胞團塊,總結來說Ha-RasV12所促使的YAP激活不參與在多層細胞團塊的過程,另一方面Cav1的下調及Rac的活化在多層細胞團塊的行程過程中非常重要。
Two mechanisms are proposed to maintain homeostasis in epithelial cells monolayer: growth arrest caused by contact inhibition and cell extrusion caused by crowding induced delamination. It is highly likely that perturbation of these homeostatic systems lead to the formation of epidermal masses in cancer development. In this study, we showed that IPTG-inducible expression of oncogenic Ha-RasV12 in MK4 cells (a clone of MDCK cells) causes the formation of multilayer cellular aggregation. The Hippo-YAP pathway has recently been shown to be an important regulator of contact inhibition. Induction of Ha-RasV12 triggered YAP nuclear translocation and subsequently YAP-targeted gene expression. Expression of Ha-RasV12 induced elevation of LATS1 and MST1, suggesting that canonical Hippo pathway may not be the cause of Ha-RasV12-induced activation of YAP. Next, we showed inhibition of p-ERK or actomyosin cytoskeleton impeded Ha-RasV12-induced activation of YAP. Treatment of Verteporfin (VP), a YAP/TEAD binding inhibitor, failed to abolish Ha-RasV12 induced multilayer cellular aggregates, indicating the involvement of other molecules. Overexpression of Cav1 inhibited Ha-RasV12 induced cellular and mechanical transformation. In addition, we showed that overexpression of Cav1 inhibited Ha-RasV12-induced YAP activation and multicellular cell aggregates. However, knockdown of Cav1 in MDCK cells only resulted in activation of YAP, but not cellular aggregates. Moreover, Rac and RhoA, both associated with cell extrusion, were increased in Ha-RasV12 overexpressed MK4 cells. EHT1864 (Rac inhibitor) abolished multilayer cellular aggregates in Ha-RasV12-overexpressed MK4 cells, whereas Y27632 (ROCK inhibitor) induced multilayer cellular aggregates in MK4 cells. Inhibition of p-ERK and overexpression of Cav1 also inhibited Ha-RasV12 induced Rac activation. Furthermore, overexpression of Rac1 resulted in cellular aggregates. Taken together, these data indicate that Ha-RasV12-induced YAP activation is not required for multicellular aggregates. On the other hand, Rac activation is essential for Ha-RasV12-induced multilayer cellular aggregate.
Abstract…………………………………………………..…I

中文摘要…………………………………………………………II

致謝……………………………………………………………III

Content…………………………...……………IV

Figure content………………..…………………………………V

Introduction…………….………...……………………………1

Material and Methods…………….………………………………...…8

Results…………….………...…………………...…12

Discussion………….………...……………...…….....19

References…….………...…………………………..…….....23

Figure legends...……………...…………………………......29
Abercrombie, M. (1979). Contact inhibition and malignancy. Nature 281, 259-262.
Adler, J.J., Johnson, D.E., Heller, B.L., Bringman, L.R., Ranahan, W.P., Conwell, M.D., Sun, Y., Hudmon, A., and Wells, C.D. (2013). Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proc Natl Acad Sci U S A 110, 17368-17373.
Andrade, D., and Rosenblatt, J. (2011). Apoptotic regulation of epithelial cellular extrusion. Apoptosis 16, 491-501.
Bader, M.F., Doussau, F., Chasserot-Golaz, S., Vitale, N., and Gasman, S. (2004). Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. Biochim Biophys Acta 1742, 37-49.
Biankin, A.V., Waddell, N., Kassahn, K.S., Gingras, M.C., Muthuswamy, L.B., Johns, A.L., Miller, D.K., Wilson, P.J., Patch, A.M., Wu, J., et al. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399-405.
Blanpain, C., Horsley, V., and Fuchs, E. (2007). Epithelial stem cells: turning over new leaves. Cell 128, 445-458.
Bryant, K.L., Mancias, J.D., Kimmelman, A.C., and Der, C.J. (2014). KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39, 91-100.
Burgermeister, E., Friedrich, T., Hitkova, I., Regel, I., Einwachter, H., Zimmermann, W., Rocken, C., Perren, A., Wright, M.B., Schmid, R.M., et al. (2011). The Ras inhibitors caveolin-1 and docking protein 1 activate peroxisome proliferator-activated receptor gamma through spatial relocalization at helix 7 of its ligand-binding domain. Mol Cell Biol 31, 3497-3510.
Carter, S.B. (1968). Tissue homeostasis and the biological basis of cancer. Nature 220, 970-974.
Cerezo, A., Guadamillas, M.C., Goetz, J.G., Sanchez-Perales, S., Klein, E., Assoian, R.K., and del Pozo, M.A. (2009). The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol Cell Biol 29, 5046-5059.
Chan, E.H., Nousiainen, M., Chalamalasetty, R.B., Schafer, A., Nigg, E.A., and Sillje, H.H. (2005). The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076-2086.
Chiba, T., Ishihara, E., Miyamura, N., Narumi, R., Kajita, M., Fujita, Y., Suzuki, A., Ogawa, Y., and Nishina, H. (2016). MDCK cells expressing constitutively active Yes-associated protein (YAP) undergo apical extrusion depending on neighboring cell status. Sci Rep 6, 28383.
Das, A., Fischer, R.S., Pan, D., and Waterman, C.M. (2016). YAP Nuclear Localization in the Absence of Cell-Cell Contact Is Mediated by a Filamentous Actin-dependent, Myosin II- and Phospho-YAP-independent Pathway during Extracellular Matrix Mechanosensing. J Biol Chem 291, 6096-6110.
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183.
Eden, S., Rohatgi, R., Podtelejnikov, A.V., Mann, M., and Kirschner, M.W. (2002). Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790-793.
Eisenhoffer, G.T., Loftus, P.D., Yoshigi, M., Otsuna, H., Chien, C.B., Morcos, P.A., and Rosenblatt, J. (2012). Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546-549.
Frisch, S.M., and Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124, 619-626.
Fujiwara, H., Gu, J., and Sekiguchi, K. (2004). Rac regulates integrin-mediated endothelial cell adhesion and migration on laminin-8. Exp Cell Res 292, 67-77.
Galbiati, F., Volonte, D., Brown, A.M., Weinstein, D.E., Ben-Ze'ev, A., Pestell, R.G., and Lisanti, M.P. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem 275, 23368-23377.
Gomez del Pulgar, T., Benitah, S.A., Valeron, P.F., Espina, C., and Lacal, J.C. (2005). Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 27, 602-613.
Goulev, Y., Fauny, J.D., Gonzalez-Marti, B., Flagiello, D., Silber, J., and Zider, A. (2008). SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18, 435-441.
Gu, Y., Forostyan, T., Sabbadini, R., and Rosenblatt, J. (2011). Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. J Cell Biol 193, 667-676.
Gu, Y., Shea, J., Slattum, G., Firpo, M.A., Alexander, M., Mulvihill, S.J., Golubovskaya, V.M., and Rosenblatt, J. (2015). Defective apical extrusion signaling contributes to aggressive tumor hallmarks. Elife 4, e04069.
Guo, C., Zheng, C., Martin-Padura, I., Bian, Z.C., and Guan, J.L. (1998). Differential stimulation of proline-rich tyrosine kinase 2 and mitogen-activated protein kinase by sphingosine 1-phosphate. Eur J Biochem 257, 403-408.
Hamaratoglu, F., Willecke, M., Kango-Singh, M., Nolo, R., Hyun, E., Tao, C., Jafar-Nejad, H., and Halder, G. (2006). The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8, 27-36.
Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496-5509.
Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457-467.
Hong, X., Nguyen, H.T., Chen, Q., Zhang, R., Hagman, Z., Voorhoeve, P.M., and Cohen, S.M. (2014). Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J 33, 2447-2457.
Jiang, K., Zhong, B., Ritchey, C., Gilvary, D.L., Hong-Geller, E., Wei, S., and Djeu, J.Y. (2003). Regulation of Akt-dependent cell survival by Syk and Rac. Blood 101, 236-244.
Jianmin, Z., Hongfang, W., and Meifu, F. (2002). Resistance of multicellular aggregates to pharmorubicin observed in human hepatocarcinoma cells. Braz J Med Biol Res 35, 255-260.
Kim, N.G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A 108, 11930-11935.
Kisslinger, A., Cantile, M., Sparaneo, G., Vitale, N., Fabbrocini, G., Chieffi, P., Cillo, C., Mancini, F.P., and Tramontano, D. (2009). cAMP and Pyk2 interact to regulate prostate cell proliferation and function. Cancer Biol Ther 8, 236-242.
Klemke, R.L., Cai, S., Giannini, A.L., Gallagher, P.J., de Lanerolle, P., and Cheresh, D.A. (1997). Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137, 481-492.
Kovar, D.R. (2006). Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 18, 11-17.
Lamarche, N., Tapon, N., Stowers, L., Burbelo, P.D., Aspenstrom, P., Bridges, T., Chant, J., and Hall, A. (1996). Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519-529.
Lara, R., Mauri, F.A., Taylor, H., Derua, R., Shia, A., Gray, C., Nicols, A., Shiner, R.J., Schofield, E., Bates, P.A., et al. (2011). An siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis. Oncogene 30, 3513-3521.
Lee, M., and Vasioukhin, V. (2008). Cell polarity and cancer--cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 121, 1141-1150.
Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28, 2426-2436.
Lin, H.H., Lin, H.K., Lin, I.H., Chiou, Y.W., Chen, H.W., Liu, C.Y., Harn, H.I., Chiu, W.T., Wang, Y.K., Shen, M.R., et al. (2015). Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget 6, 20946-20958.
Litvak, V., Tian, D., Shaul, Y.D., and Lev, S. (2000). Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades. J Biol Chem 275, 32736-32746.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.
Martin-Belmonte, F., and Mostov, K. (2008). Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 20, 227-234.
Miki, H., Suetsugu, S., and Takenawa, T. (1998). WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17, 6932-6941.
Ohoka, A., Kajita, M., Ikenouchi, J., Yako, Y., Kitamoto, S., Kon, S., Ikegawa, M., Shimada, T., Ishikawa, S., and Fujita, Y. (2015). EPLIN is a crucial regulator for extrusion of RasV12-transformed cells. J Cell Sci 128, 781-789.
Perez-Moreno, M., Jamora, C., and Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535-548.
Richerioux, N., Blondeau, C., Wiedemann, A., Remy, S., Vautherot, J.F., and Denesvre, C. (2012). Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek's Disease Virus. PLoS One 7, e44072.
Sansores-Garcia, L., Bossuyt, W., Wada, K.I., Yonemura, S., Tao, C.Y., Sasaki, H., and Halder, G. (2011). Modulating F-actin organization induces organ growth by affecting the Hippo pathway. Embo Journal 30, 2325-2335.
Schiller, H.B., Hermann, M.R., Polleux, J., Vignaud, T., Zanivan, S., Friedel, C.C., Sun, Z., Raducanu, A., Gottschalk, K.E., Thery, M., et al. (2013). beta1- and alphav-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol 15, 625-636.
Schubbert, S., Shannon, K., and Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7, 295-308.
Schurmann, A., Mooney, A.F., Sanders, L.C., Sells, M.A., Wang, H.G., Reed, J.C., and Bokoch, G.M. (2000). p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 20, 453-461.
Slattum, G., Gu, Y., Sabbadini, R., and Rosenblatt, J. (2014). Autophagy in oncogenic K-Ras promotes basal extrusion of epithelial cells by degrading S1P. Curr Biol 24, 19-28.
Slattum, G., McGee, K.M., and Rosenblatt, J. (2009). P115 RhoGEF and microtubules decide the direction apoptotic cells extrude from an epithelium. J Cell Biol 186, 693-702.
Steinhardt, A.A., Gayyed, M.F., Klein, A.P., Dong, J., Maitra, A., Pan, D., Montgomery, E.A., and Anders, R.A. (2008). Expression of Yes-associated protein in common solid tumors. Hum Pathol 39, 1582-1589.
Suzuki, K., Bose, P., Leong-Quong, R.Y., Fujita, D.J., and Riabowol, K. (2010). REAP: A two minute cell fractionation method. BMC Res Notes 3, 294.
Tamada, M., Perez, T.D., Nelson, W.J., and Sheetz, M.P. (2007). Two distinct modes of myosin assembly and dynamics during epithelial wound closure. J Cell Biol 176, 27-33.
Urra, H., Torres, V.A., Ortiz, R.J., Lobos, L., Diaz, M.I., Diaz, N., Hartel, S., Leyton, L., and Quest, A.F. (2012). Caveolin-1-enhanced motility and focal adhesion turnover require tyrosine-14 but not accumulation to the rear in metastatic cancer cells. PLoS One 7, e33085.
Vitale, G., Gentilini, D., Abbruzzese, A., and Caraglia, M. (2009). Pyk2 and Cyr61 at the cross-road of cAMP-dependent signalling in invasiveness and neuroendocrine differentiation of prostate cancer. Cancer Biol Ther 8, 243-244.
Wada, K., Itoga, K., Okano, T., Yonemura, S., and Sasaki, H. (2011). Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907-3914.
Wennerberg, K., and Der, C.J. (2004). Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci 117, 1301-1312.
Werner, E. (2004). GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci 117, 143-153.
Wiechen, K., Diatchenko, L., Agoulnik, A., Scharff, K.M., Schober, H., Arlt, K., Zhumabayeva, B., Siebert, P.D., Dietel, M., Schafer, R., et al. (2001). Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159, 1635-1643.
Yang, W.H., Lan, H.Y., Huang, C.H., Tai, S.K., Tzeng, C.H., Kao, S.Y., Wu, K.J., Hung, M.C., and Yang, M.H. (2012). RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol 14, 366-374.
Yoon, H., Choi, Y.L., Song, J.Y., Do, I., Kang, S.Y., Ko, Y.H., Song, S., and Kim, B.G. (2014). Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS One 9, e88587.
Zender, L., Spector, M.S., Xue, W., Flemming, P., Cordon-Cardo, C., Silke, J., Fan, S.T., Luk, J.M., Wigler, M., Hannon, G.J., et al. (2006). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253-1267.
Zhang, L., Yang, S., Chen, X., Stauffer, S., Yu, F., Lele, S.M., Fu, K., Datta, K., Palermo, N., Chen, Y., et al. (2015). The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol Cell Biol 35, 1350-1362.
Zhang, X., Xu, L.H., and Yu, Q. (2010). Cell aggregation induces phosphorylation of PECAM-1 and Pyk2 and promotes tumor cell anchorage-independent growth. Mol Cancer 9, 7.
Zhao, B., Li, L., Lu, Q., Wang, L.H., Liu, C.Y., Lei, Q., and Guan, K.L. (2011). Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25, 51-63.
Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747-2761.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top