跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育正
研究生(外文):Yu Cheng Lin
論文名稱:流蘇之胚、幼花與胚乳組織之培養及體胚發生
論文名稱(外文):Embryonic, Young Floret, and Endospermic Tissue Cultures and Somatic Embryogenesis of Fringe Tree (Chionanthus retusus Lindl.)
指導教授:許圳塗許圳塗引用關係
指導教授(外文):Chou Tou Shii
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:74
中文關鍵詞:流蘇胚組織幼花組織體胚發生
外文關鍵詞:Fringe Treeembryonic tissueyoung floret tissuesomatic embryogenesis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:593
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流蘇 ( Chionanthus retusus Lindl.)屬於木犀科 ( Oleaceae),為台灣之原生稀有木本植物,盛花時一片雪白,樹型及花型極為優美,是具有發展潛力的觀賞花木,並且是具有多種療效的藥用植物。其種子具有上胚軸休眠性,扦插繁殖時難發根,因此被列為難再生植物。本研究利用流蘇的胚乳組織、幼花與細胞懸浮培養以及胚組織探討流蘇的胚性細胞增生與體胚發生,期能提供流蘇不同之培養途徑,可供微體繁殖之參考。
流蘇之胚乳組織生長期中,在膠狀期以前組織成水狀,無法固定在培養基上,接種後也未分化。取固化期的流蘇胚乳組織以MS 培養基搭配2,4-D 2 mg/L或5 mg/L處理,先與胚共培養 10天後再將胚剝離,可在胚乳組織上獲得 16.7%的逆分化頻率。
以 WPM配方搭配不同的生長素與BA組合,可使流蘇小花基部切口處或花萼與花房之間的位置產生透明的癒合組織。以picloram搭配 BA處理,則癒合組織的增生較多,且發生率高,其中以picloram 2 mg/L搭配 BA 1 mg/L 為高,有100%,而癒合組織較為鬆軟,較不具胚性。
以pH自動控制系統進行流蘇花序衍生細胞懸浮培養,持續控制胞外 pH在 4.4~5.0之間可影響細胞之狀態,使細胞進入游離細胞期而不易轉入體胚發生。相較之下控制胞外 pH在 5.7-6.1的細胞狀態比較快轉入體胚發生。以再生培養基(SH + NAA 0.4 mg/L)進行細胞懸浮培養,20天後可將細胞轉為原球胚期,細胞幾乎全為圓形、細胞質濃、富含澱粉粒的胚性細胞。
以 MS培養基培養流蘇貯藏六個月的胚體組織,以強活性生長素picloram或 dicamba 1-2 mg/L誘導,可使子葉的背軸面逆分化得到胚性癒合組織,再出現間接體胚發生。picloram 2 mg/L 處理得到的癒合組織增生量比2,4-D與 dicamba大。一個月後,可見未成熟的小型體胚從向軸面的黃色或白色半透明癒合組織間接發生。培養兩個月後,picloram 2 mg/L的處理可以得到35%的體胚發生率,平均每一個培植體可得到 2.35個體胚。以 MS培養基加入dicamba 1 mg/L培養之,培養兩個月可以得到 30%的體胚發生率與4.45個體胚(平均每一個培殖體)。
0.1 mg/L與 0.2 mg/L的ABA會使流蘇小型體胚(<3 mm)的發育停滯,並反而與癒合組織開始同時膨大,可發育成熟的體胚頻率為33.8%與38.89%。ABA 0.5 mg/L則有慢慢成熟轉綠的現象,1 mg/L使體胚型態變為淡綠卻細小,仍然會抑制體胚成熟或導致體胚不正常。2 mg/L與 5 mg/L的ABA造成次生子葉的發生,體胚快速生長,並且抑制體胚的轉綠,使之呈白色透明。體胚成熟率可達81.82%與100%。
流蘇體胚在 MS基本培養基中成熟發芽情形較好,顏色很快即開始轉為深綠,且開始發根。以少量的強生長素如2,4-D 0.1 mg/L處理之,則可使較成熟的體胚快速發育,同時造成未成熟的體胚或連接體胚的癒合組織再次逆分化,形成具胚性的癒合組織,可從其上再發生體胚。
The fringe tree (Chionanthus retusus Lindl.) is a graceful flowering tree which tree crown is beautiful. It would like snowing on tree when fringe is flowing. Fringe tree is considered as a rare species and limited population in Taiwan. There is epicotyl dormancy on the seed and hard to rooting through cutting. The purpose of this research is to induce callus formation from endosperm, young floret, derived embryogenic cell for suspension culture, and embryo tissue, to study embryonic tissue cultures and somatic embryogenesis.
Endosperm culture before glutinous stage was hard to success because the endosperm tissue is like liquid. It could not be affixed on the medium and differentiate on it. There was dedifferentiation and reproliferation in the solid stage endospermic tissue ( intacted with embryo culture for 10 days) on MS medium supplemented with 2,4-D 5 mg/L. The dedifferentiation frequency of endospermic tissue was 16.7%.
There was transparent callus formation in calyx and ovary on WPM medium supplemented with different auxins(2,4-D or picloram) and BA. Callus formation was more and frequency of callus induced is higher by picloram and BA. Frequency of callus induced was 100% by picloram 2 mg/L and BA 1 mg/L but the callus was friable.
Giving control extracellular pH 4.4-5.0 level, could made the young floret-derived cell suspension culture of fringe tree change the phase. The cell masses would be induced to free cells and cell cluster stage and had less somatic embryogenesis. Giving control extracellular pH 5.5-6.1 level could made it somatic embryogenesis faster. The cell suspension culture of fringe tree under SH (added NAA 0.4 mg/L) would appeared dense cell mass and some globular structures by 20 days after suspension.
The callus formation from abaxial side of cotyledon and hypocotyl surface from zygote embryo tissue stored 6 month and then indirectly regenerate somatic embryogenesis on MS medium supplemented with picloram and dicamba 1-2 mg/L.The callus formation was more from zygote embryo tissue of fringe tree by MS medium and picloram 2 mg/L. Indirect somatic embryogenesis were from the yellow or white embryonic callus after 1 month. The frequency of somatic embryogenesis was 35% and average of somatic embryogenesis was 2.35 (somatic embryo/per explent) by picloram 2 mg/L after 2 month. The frequency of somatic embryogenesis was 30% and average of somatic embryogenesis was 24.45 (somatic embryo/per explent) by dicamba 1 mg/L.
Small somatic embryo (< 3 mm) of fringe tree would be suppressed by ABA 0.1-0.2 mg/L on normal development and enlarge with callus. 33.8% and 38.89% of somatic embryo could be maturation. ABA 0.5 mg/L made embryo to turn green slowly and ABA 1.0 mg/L would suppress development of somatic embryos or made them to become abnormal. ABA 2 mg/L and 5 mg/L would induce secondary cotyledon formation, somatic embryo growing fast, maintain the color of cotyledon in white and transparent. 81.82% and 100% of somatic embryos were maturation.
Somatic embryo development of fringe tree was better in MS medium without PGR. They began to turn green and rooting. Strong auxin like 2,4-D 0.1 mg/L could let bigger somatic embryo development but others would dedifferentiation to become embryonic callus. The embryonic callus could have somatic embryo again.
目錄
中文摘要……………………………………………………………………………….i
Abstract………………………………………………………………….iii
目錄…………………………………………………………………………I
一、前言 (Introduction) 1
二、前人研究 (Literature Review) 4
(一)流蘇組織培養之發展概況……………………………………………………….4
1流蘇胚芽與胚根之不同步休眠…………………………………………………….4
2胚體組織的體胚誘導及細胞培養………………………………………………….4
3生殖組織的體胚誘導及細胞培養………………………………………………….5
(二)胚乳培養………………………………………………………………………….5
1胚乳的源起與發育類型…………………………………………………………….5
2胚乳培養再生作用………………………………………………………………….7
3影響胚乳培養之因素……………………………………………………………….7
4胚乳的染色體異常行為…………………………………………………………….8
(三)體胚發生………………..…………………………………..…………………….9
1木本植物之體胚發生………………………………………………………………9
2體胚發生的過程……………………………………………………………………9
3體胚發生之調控因子……………………………………………………………..10
三、材料與方法 (Materials and Methods) 15
(一)流蘇貯藏胚組織之培養………………………………………………………...15
1直接體胚發生誘導………………………………………………………………...15
2誘導間接體胚發生………………………………………………………………...15
3 ABA對體胚成熟之影響…………………………………………………………..16
4生長調節劑對體胚發育之影響…………………………………………………...16
5二次培植體之培養………………………………………………………………...17
(二)流蘇幼花序組織培養…………………………………………………………...17
1癒合組織之誘導…………………………………………………………………...17
2細胞懸浮培養……………………………………………………………………...18
3 pH自動控制系統對細胞生長型態之影響………………………………………..18
4培養基比較試驗…………………………………………………………………...18
5胚性檢定…………………………………………………………………………...19
6不同生長調節劑的平板培養對體胚發生的影響………………………………...19
(三)流蘇胚乳組織之培養…………………………………………………………...20
1 細胞增大期間之膠狀期與固化期胚乳組織再生能力之比較…………………..20
2 胚體存在對流蘇胚乳培養之影響………………………………………………..20
結果(Results) ………………………………………………………………………..22
(一)流蘇貯藏胚組織之培養………………………………………………………...22
1直接體胚發生誘導………………………………………………………………...22
2誘導間接體胚發生………………………………………………………………...22
3 ABA對體胚成熟之影響………………………………………………...………...24
4生長調節劑對體胚發育的影響…………………………………………………...25
5二次培植體之培養………………………………………………………………...25
(二)流蘇幼花序組織培養…………………………………………………………...26
1癒合組織之誘導…………………………………………………………………...26
2 pH自動控制系統對細胞生長型態之影響………………………………………..27
3培養基比較試驗…………………………………………………………………...27
4不同生長調節劑的平板培養對體胚發生的影響………………………………...28
(三)胚乳培養………………………………………………………………………...28
1細胞增大期間之膠狀期與固化期胚乳組織再生能力之比較…………………...28
2胚體存在對流蘇胚乳培養之影響………………………………………………...29
五、討論(Discussion) 57
(一)培殖體特性……………………………………………………………………...57
1胚體組織…………………………………………………………………………...57
2生殖組織…………………………………………………………………………...57
3變體組織…………………………………………………………………………...58
4 二次培殖體………………………………………………………………………..59
(二)外加生長調節劑誘導癒合組織與體胚發生…………………………………...60
(三)體胚發生…………………………………………………………………………62
(四)體胚成熟與胚苗轉換……………………………………………………………66
六、參考文獻(References) 68
江舒君. 1994. 流蘇細胞懸浮培養肢體胚發生及植株再生. 國立台灣大學園藝學研究所碩士論文.
呂政璋. 2001. 香蕉AAB cv. Raja胚性細胞極化與非極化生長之調控與質量化體胚生產. 國立台灣大學園藝學研究所碩士論文.
何錦玟. 1989. 馬拉巴栗(Pachira aquatica Aubl.) 之組織培養. 國立台灣大學園藝學研究所碩士論文
李阿嬌. 1992. 流蘇體外培養之體胚發生及植株再生. 國立台灣大學園藝學研究所碩士論文.
李淑真. 1997. 百香果胚乳組織培養不定芽及體胚誘導之研究. 國立台灣大學園藝學研究所碩士論文
卓麗貞. 1990. 香蕉體胚形成及發芽的影響因子. 國立台灣大學園藝學研究所碩士論文。
邱寶玲. 1971. 低溫及GA處理打破流蘇上胚軸休眠之試驗. 國立台灣大學園藝學系學士論文.
胡適宜. 1990. 被子植物胚胎學. p171-190 曉園出版社. 台北
馬溯軒、許圳塗. 1974. 香蕉不定芽之組織培養育成幼株之研究. 中國園藝. 20:6-12.
馬溯軒、許圳塗. 1991. 植物再生與繁殖及改良. 園藝作物組織培養之應用研討會專集 p. 1-18. 國立台灣大學農學院園藝學系編印.
許圳塗、馬溯軒、蔡幸玲、李阿嬌. 1998. 流蘇胚發育期胚芽與胚根之不同步休眠與克服. 植物種苗 1:19:34.
黃鈴如. 2003. 石蒜胚乳組織程序性凋零及其挽救培養與再生. 國立台灣大學園藝學研究所碩士論文.
廖欣怡. 2002. 流蘇芽體培養不定根發生及幼花序培養體胚發生. 國立台灣大學園藝學研究所碩士論文
劉秋芳. 1999. 二倍體香蕉胚乳培養器官再生及體胚發生之研究. 國立台灣大學園藝學研究所碩士論文.
劉信良. 2000. 流蘇細胞懸浮培養生長發育及其 pH變化之特性. 國立台灣大學園藝學研究所碩士論文.
劉堂瑞. 1991. 台灣木本植物圖誌 (卷下) . 國立台灣大學農學院.
蔡幸玲、李阿嬌、馬溯軒、許圳塗. 1992. 流蘇未成熟胚培養及上胚軸休眠之克服. 科學農業. 40: 331-332.
鄧澄欣,李淑英,黃美金. 1997. 香蕉花藥癒合組織的誘導. 中國園藝 43:3 pp260-268.
鍾明娟. 2001. 二倍體拔蕉胚乳組織衍生胚性細胞懸浮培養及胚發生與多倍體質株建立. 國立台灣大學園藝學研究所碩士論文
Barnes, H. W. 1988. Roting responses and possibllities of Fraxinus, Osmanthus, Chionanthus. Plant Propagation 34(2):5-6.
Berger, F. 1999. Endosperm development. Plant Biology. 2:28–32.
Bhojwani S. S. and M. K. Razdan, 1996. Plant tissue culture: theory and practice. A revised edition. Elsevier, Amsterdam.
Ceniza, M. S., S. Ueda, and Y. Sugimura. 1992. In vitro clture of coconut endoperm : callus induction and its fatty acids. Plant Cell Rep. 11 : 546-549.
Chan, C. R. and R. D. Marquard. 1999. Accelerated propagation of Chionanthus virginicus via embryo culture. HortScience 34: 140-141.
Chaudhury, A. M., A. Koltunow, T. Payne,M. Luo, M. R. Tucker, E.S. Dennis, and W.J. Peacock. 2001. Control of early seed development. Annu. Rev. Cell Dev. Biol. 2001. 17:677–99.
Chiavarino, A. M., M. Rosato, S. Manzanero, G. Jime´nez, M. Gonza´lez-Sa´nchez and M. J. Puertas. 2000. Chromosome nondisjunction and instabilities in tapetal cells are affected by B chromosomes in maize. Genetic Soc. Amer. 155: 889–897.
Chung, J. P., T. L. Chang, A. Y. M. Chi, and C. T. Shii. 2006. Triploid banana cell changes with somatic embryogenesis in embryogenic cell suspension culture. Plant Cell Tiss Cult. 87:305-314.
Dirr, M. A. 1990. Manual of woodtlandscapeplants: Theiridentification ornamental characteristics, culture, propagation and Uses. Stipes Publ. Co., Champaign, III.
Dirr, M. A. and C. W. Heaser, Jr. 1987. The reference manual of woody plant propagation. Athen, Ga, univ. Press.
Dodeman, V. L., G. Ducreux and M. Kreis. 1997. Zygotic embryogenesis versus somatic embryogenesis. J.Exp. Bot. 48:1493-1509.
Feher, A., T. P. Pasternak and D. Dudits. 2003. Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss. Org. Cult. 74:201-228.
Finer, J. J. 1994. Plant regeneration via embryogenic suspension culture. In: Dixon, R. A. and R. A. Gonzales.(eds) Plant Cell Culture: A Practical Approach second edition. Oxford, New York, p.99-125.
Gill, J. D. and F. L. Fogge. 1974. Chionanthus virginicus L. In : Seeds of Woody Plant in the United States. USDA Agri. Handbook, No. 450, p.323-325.
Gmitter, F. G., X. B. Ling, and X. X. Deng. 1990. Induction of triploid Citus plants from endosperm calli in vitro. Theor. Appl. Genet. 80:785-790.
Huang, I. C., C. T. Shii, and S. S. Ma. 1999. Cycling growth charactersin embryogenic cell suspension culture of banana AAA Cavendish subgroup and AAB cultivar. J. Chinese Soc. Hort. Sci. 45:130-143.
Jimenez, V. M. 2005. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation. 47:91–110.
Kantharajah, A. S. and P.G. Golegaonkar. 2004. Somatic embryogenesis in eggplant. Sci. Hortic. 99: 107–117.
Komamine, A. 2001. Mechanisms osomatic embryogenesis in carrot susoension cultures. Phytomorphology Golden Jubilee Issue:277-287.
Larkins, B. A., B. P. Dilkes, R. A. Dante, C. M. Coelho, Y. Woo and Y. Liu. 2001. Investigating the hows and whys of DNA endoreduplication. J. Exp. Bot. 52:183-192.
Lloyd, G. and McCown. 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc. Inter. Plant Prop. Soc. 30: 421-427.
Lukaszewski, A. J. 1995. Chromatid and chromosome type breakage-fusion-bridge cycles in wheat (Triticum aesticum L.). Genetic Soc. Amer. 140:1069-1085.
Murashige, T. and F. Shoog. 1962. A revised medium for rapid goowth and bioassays with tobacco tissue culture. Physiol. Plant. 15:473-497.
Nishiwaki, M., K. Fujino, Y. Koda, K. Masuda, and Y. Kikuta. 2000. Somatic embryogenesis induced by the simpleapplication of abscisic acid to carrot(Daucus carota L.) seedlings in culture. Planta 211:756-759.
Osuga, K. and A. Komamine. 1994. Synchronization of somatic embryogenesis from carrot cells at high frequency as a basis for the mass production of embryos. Plant Cell Tiss. Org. Cult. 39:125-135.
Osuga, K., H. Masuda, and A. Komamine. 1999. Synchronization of somatic embryogenesis at high frequency using carrot suspension culture: model systems and application in plant development. Methods Cell Sci. 21:129-140.
Schenk, R. U. and A. C. Hildebrandt. 1072. Medium and technique for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199-204.
Sehgal, C. B. 1974. Growth of barley and wheat endosperm in cultures. Cur. Sci. 43: 38-40.
Suttle, J. C. 1985. Involvement of ethylene in the action of the cotton defoliant thidiazuorn. Plant Physiol. 78 : 272-276.
Thomas, J. C. and F. R. Katterman. 1986. Cytokinin activity induced by thidiazuron. Plant Physiol. 81 : 681-683.
Thomas, T. D., A. K. Bhatnagar, and S. S. Bhojwani. 2000. Production of triploid plants of mulberry (Morus alba L) by endosperm culture. Plant Cell Reports. 19: 395-399.
Tulecke, W. 1987. Somatic embryogenesis in woody perennials. In: J. M. bonga et al.,(eds.) Cell and Tisue Culture in Foresty 2 : 62-91.
Wegel, E., E. Pilling, G. Calder, S. Drea, J. Doonan, L. Dolan and P. Shaw. 2005. Three-dimensional modelling of wheat endosperm development. New Phytol. 168: 253–262.
Wegel, E. and P.J. Shaw. 2005. Chromosome organization in wheat endosperm and embryo. Cytogenet Genome Res. 109:175–180.
Wyllie, A. H. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68: 251-306.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top