跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳承耀
研究生(外文):Cheng-Yao Chen
論文名稱:低溫製備磷酸鈣及氧化鋁生醫複合材料之研究
論文名稱(外文):Low-Temperature Preparation of Calcium Phosphate plus Aluminum oxide Biocomposite
指導教授:許澤勳
指導教授(外文):Tzer-Shin Sheu
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:氫氧基磷灰石磷酸三鈣氧化鋁反應燒結
外文關鍵詞:hydroxyapatitetri-calcium phosphateAl2O3reaction sintering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以磷酸三鈣、氫氧基磷灰石及氧化鋁與氫氧化物製備生醫複合材料,主要原因是磷酸三鈣、氫氧基磷灰石及氧化鋁等生醫材料,具有生物相容性及優良機械性質。其中氫氧基磷灰石具有優良生物相容性,並且與骨骼成份相近,而氧化鋁具有生物惰性。 除了氫氧基磷灰石和磷酸三鈣為主要材料外,在製程反應中,藉由燒結添加劑NaOH及KOH加入在低溫產生燒結反應。其中燒結溫度分別設定350℃和900℃,及450℃和900℃來觀察燒結收縮率及相組成。
  傳統的氫氧基磷灰石及磷酸三鈣複合材料均需藉由高溫燒結來完成,其中溫度需要達到T>1000℃以上。而本研究利用氫氧化物燒結添加劑發現:在350℃及450℃燒結情況下,反應燒結後的磷酸鈣加氧化鋁複合材料,尺寸收縮約1~2%左右。至於在900℃燒結的樣品,有些樣品的燒結緻密性可高達90%以上。
  至於燒結後複合材相組成,氫氧基磷灰石及氧化鋁複合材料是以氫氧基磷灰石(HA)加α-Al2O3的樣品結構,至於磷酸三鈣及氧化鋁的複合材料是以β-Ca3(PO4)2及α-Al2O3晶體結構為主,至於是否產生α-Ca3(PO4)2晶體結構將進一步討論。燒結後樣品的微觀組織,其中磷酸三鈣,氫氧基磷灰石及氧化鋁的精力並沒有明顯成長的現象。至於樣品製備、燒結機構及相關的物理特性相關性將詳細討論。


Tri-calcium phosphate(Ca3(PO4)2), hydroxyapatite(Ca10(PO4)6(OH)2), aluminum oxide(Al2O3), and hydroxide are used to prepare biocomposites in this study. This is because tri-calcium phosphate , hydroxyapatite, and aluminum oxide are bio-compatible with excellent mechanical properties. Among them, Ca10(PO4)6(OH)2 is similar to the composition of natural bone, and Al2O3 is bioisert. Except for these three materials, NaOH and KOH are added to react-sinter with them at low temperatures, which are 350℃ and 900℃, or 450℃ and 900℃, to observe dimension shrinkage and phase existence after sintering.
In tradition, Ca10(PO4)6(OH)2 (HA) or Ca3(PO4)2 composites are mostly sintered at high temperatures, which are T>1000℃. In this study , under a sintering condition at 350℃ or 450℃, most of sintered Ca3(PO4)2 + Al2O3 , or Ca10(PO4)6(OH)2 + Al2O3 specimens show their linear shrinkage with 1~2%. When specimens being sintered at 900℃, some specimens show their densification rate up to 90%.
As to phase existence of sintered specimens : HA+ Al2O3 composites contain. HA and α-Al2O3 crystal structures. Ca3(PO4)2 + Al2O3 composites contain β-Ca3(PO4)2 and α-Al2O3 crystal structures. whether α-Ca3(PO4)2 exists in these sintered specimens will be further discussed. As to microstructures, Ca3(PO4)2, Al2O3, and HA do not show any significant grain growth. As to the correlations among sample preparations, sintering mechanisms, and physical properties, are discussed in detail.


中文摘要 I
英文摘要 III
誌謝 IV
總目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究背景及動機 2
第二章 理論基礎 4
2.1 生醫材料簡介 4
2.2 理想人體硬組織植入材 7
2.3 常見生醫骨科材料 8
2.3.1 骨科金屬植入材 8
2.3.2 骨科陶瓷植入材 9
2.4.1 氫氧基磷灰石結構 11
2.4.2 氫氧基磷灰石的基本性質 12
2.5 磷酸鈣鹽類 14
2.6 生物活性 15
2.7 機械性質的考量 16
第三章 實驗方法 17
3.1 實驗藥品 17
3.2 實驗步驟 17
3.2.1 KOH 與NaOH 水溶液製備 18
3.2.2 粉末混合與低溫熱處理 18
3.3 物性量測及微觀組織觀察 20
3.3.1 燒結收縮率分析 20
3.3.2 微觀組織觀察 20
3.3.3 晶體結構分析 21
第四章結果與討論 22
4.1 燒結完後複合材料收縮率分析 22
4.1.1 以 10wt%KOH 為燒結添加劑之樣品收縮率 22
4.1.2 以 20wt%KOH 為燒結添加劑之樣品收縮率 23
4.1.3 以 10wt%NaOH 為燒結添加劑之樣品收縮率 24
4.1.4 燒結至 900℃之樣品收縮率 24
4.2 微觀組織觀察 26
4.2.1 H7K1 不同溫度燒結後之比較 26
4.2.2 H7K2 不同溫度燒結後之比較 28
4.2.3 H7N1 不同溫度燒結後之比較 29
4.2.4 H7K1、H7K2 及H7N1 不同溫度燒結後之結果討論 31
4.2.5 H8K1、H8K2 及H8N1 之結果 31
4.2.6 H8K1、H8K2 及H8N1 燒結後之結果討論 34
4.2.7 H9K1L 燒結後之結果討論 34
4.2.8 H10K1H、H10K2H 及H10N1H 燒結後之結果討論 35
4.2.9 T7K1 不同溫度燒結後之比較 37
4.2.10 T7K2 不同溫度燒結後之比較 39
4.2.11 T7N1 不同溫度燒結後之比較 40
4.2.12 T10K1 不同溫度燒結後之比較 42
4.2.13 T10K2 不同溫度燒結後之比較 43
4.2.14 T10N1 不同溫度燒結後之比較 45
4.2.15 所有樣品在不同溫度燒結後的結果討論 46
4.2.16 H10 剖斷面不同燒結添加劑之比較 47
4.3 晶體結構分析 48
4.3.1 H7K1H、H7K2H 及H7N1H 之XRD 圖比較 48
4.3.2 H7K1L、H7K2L 及H7N1L 之XRD 圖比較 49
4.3.3 H10K1H、H10K2H 及H10N1H 之XRD 圖比較 50
4.3.4 H10K1L、H10K2L 及H10N1L 之XRD 圖比較 51
4.3.5 T7K1H、T7K2H 及T7N1H 之XRD 圖比較 52
4.3.6 T7K1L、T7K2L 及T7N1L 之XRD 圖比較 53
4.3.7 T10K1H、T10K2H 及T10N1H 之XRD 圖比較 54
4.3.8 T10K1L、T10K2L 及T10N1L 之XRD 圖比較 55
4.3.9 選用 10wt%KOH 作為燒結添加劑之XRD 圖比較 56
4.3.10 選用 20wt%KOH 作為燒結添加劑之XRD 圖比較 57
4.3.11 選用 10wt%NaOH 作為燒結添加劑之XRD 圖比較 58
4.3.12 所有樣品在不同溫度燒結後的XRD 圖討論 59
第五章結論 60
第六章 參考文獻 62

[1]L. L. Hench, “bioceramics: from concept to clinic”, J. Am. Ceram. Soc., vol.74, no.7, 1991, pp.1487-1510.
[2]A. J. Garcia, P. Ducheyne, and D. Bottiger, “Effect of surface reaction stage on fibronectin-mediated adhesion of osteoblast-like cells to bioactive glass”, J. Biomed. Mater. Res., vol.40, no.2, 1998, pp.48-56.
[3]P. D. Constantino and C. D. Friedman, “synthetic bone graft substitutes”, Oto. Clin. NA., vol.27, no.5, 1994, pp.1037-1074.
[4]W. R. Walsh and D. L. Christiansen, “Demineralized bone matrix as a template for mineral-organic composites”, Biomaterials, vol.16, no.18, 1995, pp.1363-1371.
[5]Y. Cui, Yi Liu, Yi Cui, X. Jing, P. Zhang, and X. Chen, “The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair”, Acta Biomater., vol.5, no.7, 2009, pp.2680-2692.
[6]M. Yoshikawa, N. Tsuji, T. Toda, and H. Ohgushi, “Osteogenic effect of hyaluronic acid sodium salt in the pores of a hydroxyapatite scaffold”, Mater. Sci. Eng C, vol.27, no.2, 2007, pp.220-226.
[7]M. M. Belmonte, A. D. Benedittis, R. A. A. Muzzarelli, P. Mengucci, G. Biagini, M. G. Gandolfi, C. Zucchini, A. Krajewski, and A. Ravaglioli, E. Roncari, “Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients” , J. Mater. Sci. Mater. Med., vol.9, no.9, 1998, pp.485-492.
[8]A. L. Macope, J. H. Morales, and R. R. Clemente, “Nanosized Hydroxyapatite Precipitation from Homogeneous Calcium/Citrate/Phosphate Solutions Using Microwave and Conventional Heating”, Adv. Mater., vol.10, no.1, 1998, pp.49-53.
[9]L. Brooks, A. H. James, I. S. Edelman, and F. D. Moore, “method for simultaneous measurement of total exchangeable body sodium and potassium in man”, Am. J. Med., vol.14, no. 4, 1953, p.497.
[10]D. E. Cutright, S. N. Bhaskar, J. M. Brady, L. Getter, and W. R. Posey, “reaction of bone to tricalcium phosphate ceramic pellets”, Oral Surgery, Medicine, Pathology, vol.33, no.5, 1972, pp.850-856.
[11]J. G. J. Peelen, B. V. Rejda, and K. De Groot, “Preparation and properties of sintered hydroxyapatite”, Ceram. Int., vol.4, no.2, 1978, pp.71-74.
[12]R. Shahin and M. Kern “Effect of air-abrasion on the retention of zirconia ceramic crowns luted with different cements before and after artificial aging”, vol.26, no 9, 2010, pp.922-928.
[13]N. Saito and K. Takaoka, “New synthetic biodegradable polymers as BMP carriers for bone tissue engineering”, Biomaterials, vol.24, no.13, 2003, pp.2287-2293.
[14]M. Kikuchi, S. Itoh, S. Ichinose, and K. Shinomiya. J. Tanaka, “Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo”, vol.22, no.13, 2001, pp.1705-1711.
[15]A. Ravagloli, A. Krajewski, Bioceramics: Materials, Properties, Applications, Chapman &; Hall, London, 1992.
[16]M. Morales, R. Navarro, M. Almenara, J. M. Medina, C. Melian, and C. Gutierrez, “Effects of fibrin on the integration hydroxyapatite coating implants: experimental study in a rabbit model”, J. Exp. Anim. Sci., vol.42, no.2, 2002, pp.102-112.
[17]E. Alici, O. Z. Alku, and S. Dost, “Prostheses designed for vertebral body replacement”, J. Biomech., vol.23, no.8, 1990, pp.799-809.
[18]A. Rapacz-Kmita, A. Slosarczyk, Z. Paszkiewicz, and C. Paluszkiewicz, “Phase stability of hydroxyapatite–zirconia (HAp–ZrO2) composites for bone replacement”, J. Mol. Structure, vol.704, 2004, pp.333-340.
[19]N. Tamai, A. Myoui, T. Tomita, T. Nakase, J. Tanaka, T. Ochi, and H. Yoshikawa, “Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo”, J. Biomed. Mater. Res., vol.59, no.1, 2001.
[20]Z. Shi, X. Huang, Y. Cai, R. Tang, and D. Yang, “Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells”, Acta Biomater., vol.5, no.1, 2009, pp.338-345.
[21]J. R. Jones and L. L. Hench, “Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering”, J. Biomed. Mater. Res. Part B: Applied Biomater, vol.68, no.1, 2004, pp.36-44.
[22]E. I. Abdel-Gawad and S. A. Awwad, “Biocompatibility of Intravenous nano hydroxyapatite in male rats”, Nature and science, vol.8, no.9, 2010.
[23]B. D. Katthagen, Bone Regeneration with Bone Substitutes: An Animal Study, Springer-Verlag, 1987.
[24]J. B. Park and R. S. Lakes, Biomaterials: An Introduction, New York and Londom, 1984.
[25]Y. Cui, Yi Liu, Yi Cui, X. Jing, P. Zhang, and X. Chen, “The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair”, Acta Biomater., vol.5, no.7, 2009, pp.2680-2692.
[26]W. Pabst, E. G., I. S. and M. C., “Preparation and characterization of porous alumina-zirconia composite ceramics”, J. Eur. Ceram. Soc., vol.31, no.14, 2011, pp.2721-2731.
[27]J. Camilleri, A. Cutajar, and B. Mallia, “Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material ”, Dental Materials. , vol.27, no.8, 2011, pp.845-854.
[28]S. Panzavolta, B. Bracci, K. Rubini, and A. Bigi, “Optimization of a biomimetic bone cement: Role of DCPD”, J. Inorganic Biochem., vol.105, no.8, 2011, pp.1060-1665.
[29]J. T. Zhang, F. Tancret, and J. M. Bouler, “Fabrication and mechanical properties of calcium phosphate cements (CPC) for bone substitution”, Mater. Sci. Eng. C, vol.31, no.4, May2011, pp.740-747.
[30]K. H. W. Seah and X. Chen, “A comparison between the corrosion characteristics of 316 stainless steel, solid titanium and porous titanium”, Corros. Sci., vol.34, no.11, 1993, pp.1841-1851.
[31]K. Alvarez, K. Sato, S. K. Hyun, and H. Nakajima, “Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications”, Mater. Sci. Eng C, vol.28, no.1, 2008, pp.44-50.
[32]M. Ninomi, “Mechanical properties of biomedical titanium alloys”, Mater. Sci. Eng A, vol.243, no.1-2, 1998, p.231-236.
[33]M. Ninomi, D. Kuroda, K. I. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, and A. Suzuki, “Corrosion wear fracture of new β type biomedical titanium alloys”, Mater. Sci. Eng A, vol.263, no.2, 1999, pp.193-199.
[34]L. L. Hench, “Ceramics, glass, and composites in medicine”, Med. Instrum., vol.7, no.2, 1973, pp.136-144.
[35]L. L. Hench, C. G. Pantano Jr, P. J. Buscemi, and D. C. Greenspan, “Analysis of bioglass fixation of hip prostheses”, J. Biomed. Mater. Res., vol.11, no.2, 1977, pp.267-282.
[36]M. S. Karlan, L. L. Hench, M. Madden, and M. Oqino, “A bone-bonding bioactive material implant in the head and neck: bioglass”, Surq Forum., vol.29, 1978, pp.525-527.
[37]L. L. Hench, and H. A. Paschall, “Direct chemical bond of bioactive glass-ceramic materials to bone and muscle”, J. Biomed. Mater. Res., vol.7, no.3, 1973, pp.25-42.
[38]T. Nakamura, T. Yamamuro, S. Higashi, T. Kokubo, and S. Itoo, “A new glass-ceramic for bone replacement: Evaluation of its bonding to bone tissue”, J. Biomed. Mater. Res., vol.19, no.6, 1985, pp.685-698.
[39]A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A. H. S. Rebelo, and J. M. F. Ferreira, “Development and in vitro characterization of sol-gel derived CaO–P2O5–SiO2–ZnO bioglass”, Acta Biomater., vol.3, no.2, 2007, pp.255-262.
[40]R. Ravarian, F. Moztarzadeh, M. S. Hashjin, S. M. Rabiee, P. Khoshakhlagh, and M. Tahriri, “Synthesis, characterization and bioactivity investigation ofbioglass/hydroxyapatite composite”, Ceram. Int., vol.36, no.1, 2010, pp.291-297.
[41]P. Ducheyne and K. De Groot, “In vivo surface activity of a hydroxyapatite alveolar bone substitute”, J. Biomed. Mater. Res., vol.15, no.3, 1981, pp.441-445.
[42]J. Huang, S. M. Best, W. Bonfield, and T. Buckland, “Development and characterization of titanium-containing hydroxyapatite for medical applications”, Acta Biomater., vol.6, no.1, 2010, pp.241-249.
[43]C. Ergun, “Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing”, Ceram. Int., vol.37, 2011, pp.935-942.
[44]L. L. Hench, Bioactive glass and glass-ceramic: A prespective, CRC
Handbook of Bio. Ceram., 1990.
[45]鍾仁傑,以溶膠凝膠法製備含鋅及銀之氫氧基磷灰石與其抗菌性質研究,清華大學材料科學與工程研究所碩士論文,2000年, 第九頁。
[46]J. D. Bronzino, The Biomedical Engineering Handbook, CRC Press and Boca Raton, 2000.
[47]S. K. Yen and C. M. Lin, “Characterization of electrolytic Al2O3/CaP composite coatings on pure titanium”, J. Electrochem. Soc., vol.149, no.5, pp.79-87.
[48]G. Hannink and J. J. Chris Arts, “Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration”, Injury Intermational Journal of the care of the injured, vol.42, 2011, pp.22-25.
[49]F. C. M. Driessens, R. M. H. Verbeck, Biomenerals, CRC Press and Boca Raton, 1990, pp.37-59.
[50]T. Kijima and M. Tsutsumi, “preparation and thermal properties of dense polycrystalline oxyhydroxyapatite”, J. Am. Ceram. Soc., vol.62, no.9-10, 1992, pp.1419-1432.
[51]G. Willmann, “Medical grade hydroxyapatite: state of the art”, British Ceram. Trans., vol.95, no.5, 1995, pp.212-216.
[52]K. De Groot, Bioceramics if calcium phosphate, CRC Press and Boca Amsterdam, 1993.
[53]G. L. De Lange and K. Donath, “Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants”, Biomaterials, vol.10, no.2 ,1989, pp.121-125.
[54]S. V. Dorozhkin and M. Epple, “biological and medical significance of calcium phosphates”, Angew. Chem. Int. Ed., vol.41, no.7, 2002, pp.3130-3146.
[55]Park JB, Lakes RS. Biomaterials: An Introduction. 2nd edition, New York, Plenum Press, 1992.
[56]N. Nezafati, F. Moztarzadeh, S. Hesaraki, and M. Mozafari, “Synergistically reinforcement of a self-setting calcium phosphate cement with bioactive glass fibers”, Ceram. Int., vol.37, no.3, 2011, pp.927-934.
[57]J. R. Jones and L. L. Hench, “Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering”, J. Biomed. Mater. Res. Part B: Applied Biomater., vol.68, no.1, 2004, pp.36-44.
[58]X. Ge, Y. Leng, F. Ren, and X. Lu, “Integrity and zeta potential of fluoridated hydroxyapatite nanothick coatings for biomedical applications”, J. Mech. Biomed. Mater., vol.4, no.7, 2011, pp.1046-1056.
[59]M. Dressler, F. Dombrowski, U. Simon, J. Bornstein, V. D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar, and M. Neumann, “Influence of gelatin coatings on compressivestrength of porous hydroxyapatite ceramics”, J. Eur. Ceram. Soc., vol.31, no.4, 2011, pp.523-529.
[60]K. Zhao, Y. F. Tang, Y. S. Qin, and J. Q. Wei, “Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties”, Ceram. Int., vol.37, no.2, 2011, pp.635-639.
[61]K. Zhou, Y. Zhang, D. Zhang, X. Zhang, Z. Li, G. Liu, and T. W. Button, “Porous hydroxyapatite ceramics fabricated by an ice-templating method”, Scripta Mater., vol.64, no.5, 2011, pp.426-429.
[62]M. Yoshikawa, N. Tsuji, T. Toda, and H. Ohgushi, “Osteogenic effect of hyaluronic acid sodium salt in the pores of a hydroxyapatite scaffold”, Mater. Sci. Eng.: C, vol.27, no.2, 2007, pp.220-226.
[63]P. Q. Franco, C. F. C. Joao, J. C. Silva, and J. P. Borges, “Electrospun hydroxyapatite fibers from a simple sol-gel system”, Mater. Letters, vol.67, no.1, 2012, pp.233-236.
[64]I.Sopyan and J. Kaur, “Preparation and characterization of porous hydroxyapatite through polymeric sponge method”, Ceram. Int., vol.35, no.8, 2009, pp.3161-3168.
[65]Y. Zhang, Y. Yokogawa, X. Feng, Y. Tao, and Y. Li, “Preparation and properties of bimodal porous apatite ceramics through slip casting using different hydroxyapatite powders”, Ceram. Int., vol.36, no.1, 2010, pp. 107-113.
[66]S. Bose, S. Dasgupta, S. Tarafder, and A. Bandyopadhyay , “Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties”, Acta Bio., vol.6, no.9, 2010, pp. 3782-3790.
[67]J. Wang and L. L. Shaw, “Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness”, Biomaterials, vol.30, no.34, 2009, pp.6565-6572.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊