[1]L. L. Hench, “bioceramics: from concept to clinic”, J. Am. Ceram. Soc., vol.74, no.7, 1991, pp.1487-1510.
[2]A. J. Garcia, P. Ducheyne, and D. Bottiger, “Effect of surface reaction stage on fibronectin-mediated adhesion of osteoblast-like cells to bioactive glass”, J. Biomed. Mater. Res., vol.40, no.2, 1998, pp.48-56.
[3]P. D. Constantino and C. D. Friedman, “synthetic bone graft substitutes”, Oto. Clin. NA., vol.27, no.5, 1994, pp.1037-1074.
[4]W. R. Walsh and D. L. Christiansen, “Demineralized bone matrix as a template for mineral-organic composites”, Biomaterials, vol.16, no.18, 1995, pp.1363-1371.
[5]Y. Cui, Yi Liu, Yi Cui, X. Jing, P. Zhang, and X. Chen, “The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair”, Acta Biomater., vol.5, no.7, 2009, pp.2680-2692.
[6]M. Yoshikawa, N. Tsuji, T. Toda, and H. Ohgushi, “Osteogenic effect of hyaluronic acid sodium salt in the pores of a hydroxyapatite scaffold”, Mater. Sci. Eng C, vol.27, no.2, 2007, pp.220-226.
[7]M. M. Belmonte, A. D. Benedittis, R. A. A. Muzzarelli, P. Mengucci, G. Biagini, M. G. Gandolfi, C. Zucchini, A. Krajewski, and A. Ravaglioli, E. Roncari, “Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients” , J. Mater. Sci. Mater. Med., vol.9, no.9, 1998, pp.485-492.
[8]A. L. Macope, J. H. Morales, and R. R. Clemente, “Nanosized Hydroxyapatite Precipitation from Homogeneous Calcium/Citrate/Phosphate Solutions Using Microwave and Conventional Heating”, Adv. Mater., vol.10, no.1, 1998, pp.49-53.
[9]L. Brooks, A. H. James, I. S. Edelman, and F. D. Moore, “method for simultaneous measurement of total exchangeable body sodium and potassium in man”, Am. J. Med., vol.14, no. 4, 1953, p.497.
[10]D. E. Cutright, S. N. Bhaskar, J. M. Brady, L. Getter, and W. R. Posey, “reaction of bone to tricalcium phosphate ceramic pellets”, Oral Surgery, Medicine, Pathology, vol.33, no.5, 1972, pp.850-856.
[11]J. G. J. Peelen, B. V. Rejda, and K. De Groot, “Preparation and properties of sintered hydroxyapatite”, Ceram. Int., vol.4, no.2, 1978, pp.71-74.
[12]R. Shahin and M. Kern “Effect of air-abrasion on the retention of zirconia ceramic crowns luted with different cements before and after artificial aging”, vol.26, no 9, 2010, pp.922-928.
[13]N. Saito and K. Takaoka, “New synthetic biodegradable polymers as BMP carriers for bone tissue engineering”, Biomaterials, vol.24, no.13, 2003, pp.2287-2293.
[14]M. Kikuchi, S. Itoh, S. Ichinose, and K. Shinomiya. J. Tanaka, “Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo”, vol.22, no.13, 2001, pp.1705-1711.
[15]A. Ravagloli, A. Krajewski, Bioceramics: Materials, Properties, Applications, Chapman &; Hall, London, 1992.
[16]M. Morales, R. Navarro, M. Almenara, J. M. Medina, C. Melian, and C. Gutierrez, “Effects of fibrin on the integration hydroxyapatite coating implants: experimental study in a rabbit model”, J. Exp. Anim. Sci., vol.42, no.2, 2002, pp.102-112.
[17]E. Alici, O. Z. Alku, and S. Dost, “Prostheses designed for vertebral body replacement”, J. Biomech., vol.23, no.8, 1990, pp.799-809.
[18]A. Rapacz-Kmita, A. Slosarczyk, Z. Paszkiewicz, and C. Paluszkiewicz, “Phase stability of hydroxyapatite–zirconia (HAp–ZrO2) composites for bone replacement”, J. Mol. Structure, vol.704, 2004, pp.333-340.
[19]N. Tamai, A. Myoui, T. Tomita, T. Nakase, J. Tanaka, T. Ochi, and H. Yoshikawa, “Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo”, J. Biomed. Mater. Res., vol.59, no.1, 2001.
[20]Z. Shi, X. Huang, Y. Cai, R. Tang, and D. Yang, “Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells”, Acta Biomater., vol.5, no.1, 2009, pp.338-345.
[21]J. R. Jones and L. L. Hench, “Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering”, J. Biomed. Mater. Res. Part B: Applied Biomater, vol.68, no.1, 2004, pp.36-44.
[22]E. I. Abdel-Gawad and S. A. Awwad, “Biocompatibility of Intravenous nano hydroxyapatite in male rats”, Nature and science, vol.8, no.9, 2010.
[23]B. D. Katthagen, Bone Regeneration with Bone Substitutes: An Animal Study, Springer-Verlag, 1987.
[24]J. B. Park and R. S. Lakes, Biomaterials: An Introduction, New York and Londom, 1984.
[25]Y. Cui, Yi Liu, Yi Cui, X. Jing, P. Zhang, and X. Chen, “The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair”, Acta Biomater., vol.5, no.7, 2009, pp.2680-2692.
[26]W. Pabst, E. G., I. S. and M. C., “Preparation and characterization of porous alumina-zirconia composite ceramics”, J. Eur. Ceram. Soc., vol.31, no.14, 2011, pp.2721-2731.
[27]J. Camilleri, A. Cutajar, and B. Mallia, “Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material ”, Dental Materials. , vol.27, no.8, 2011, pp.845-854.
[28]S. Panzavolta, B. Bracci, K. Rubini, and A. Bigi, “Optimization of a biomimetic bone cement: Role of DCPD”, J. Inorganic Biochem., vol.105, no.8, 2011, pp.1060-1665.
[29]J. T. Zhang, F. Tancret, and J. M. Bouler, “Fabrication and mechanical properties of calcium phosphate cements (CPC) for bone substitution”, Mater. Sci. Eng. C, vol.31, no.4, May2011, pp.740-747.
[30]K. H. W. Seah and X. Chen, “A comparison between the corrosion characteristics of 316 stainless steel, solid titanium and porous titanium”, Corros. Sci., vol.34, no.11, 1993, pp.1841-1851.
[31]K. Alvarez, K. Sato, S. K. Hyun, and H. Nakajima, “Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications”, Mater. Sci. Eng C, vol.28, no.1, 2008, pp.44-50.
[32]M. Ninomi, “Mechanical properties of biomedical titanium alloys”, Mater. Sci. Eng A, vol.243, no.1-2, 1998, p.231-236.
[33]M. Ninomi, D. Kuroda, K. I. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, and A. Suzuki, “Corrosion wear fracture of new β type biomedical titanium alloys”, Mater. Sci. Eng A, vol.263, no.2, 1999, pp.193-199.
[34]L. L. Hench, “Ceramics, glass, and composites in medicine”, Med. Instrum., vol.7, no.2, 1973, pp.136-144.
[35]L. L. Hench, C. G. Pantano Jr, P. J. Buscemi, and D. C. Greenspan, “Analysis of bioglass fixation of hip prostheses”, J. Biomed. Mater. Res., vol.11, no.2, 1977, pp.267-282.
[36]M. S. Karlan, L. L. Hench, M. Madden, and M. Oqino, “A bone-bonding bioactive material implant in the head and neck: bioglass”, Surq Forum., vol.29, 1978, pp.525-527.
[37]L. L. Hench, and H. A. Paschall, “Direct chemical bond of bioactive glass-ceramic materials to bone and muscle”, J. Biomed. Mater. Res., vol.7, no.3, 1973, pp.25-42.
[38]T. Nakamura, T. Yamamuro, S. Higashi, T. Kokubo, and S. Itoo, “A new glass-ceramic for bone replacement: Evaluation of its bonding to bone tissue”, J. Biomed. Mater. Res., vol.19, no.6, 1985, pp.685-698.
[39]A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A. H. S. Rebelo, and J. M. F. Ferreira, “Development and in vitro characterization of sol-gel derived CaO–P2O5–SiO2–ZnO bioglass”, Acta Biomater., vol.3, no.2, 2007, pp.255-262.
[40]R. Ravarian, F. Moztarzadeh, M. S. Hashjin, S. M. Rabiee, P. Khoshakhlagh, and M. Tahriri, “Synthesis, characterization and bioactivity investigation ofbioglass/hydroxyapatite composite”, Ceram. Int., vol.36, no.1, 2010, pp.291-297.
[41]P. Ducheyne and K. De Groot, “In vivo surface activity of a hydroxyapatite alveolar bone substitute”, J. Biomed. Mater. Res., vol.15, no.3, 1981, pp.441-445.
[42]J. Huang, S. M. Best, W. Bonfield, and T. Buckland, “Development and characterization of titanium-containing hydroxyapatite for medical applications”, Acta Biomater., vol.6, no.1, 2010, pp.241-249.
[43]C. Ergun, “Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing”, Ceram. Int., vol.37, 2011, pp.935-942.
[44]L. L. Hench, Bioactive glass and glass-ceramic: A prespective, CRC
Handbook of Bio. Ceram., 1990.
[45]鍾仁傑,以溶膠凝膠法製備含鋅及銀之氫氧基磷灰石與其抗菌性質研究,清華大學材料科學與工程研究所碩士論文,2000年, 第九頁。[46]J. D. Bronzino, The Biomedical Engineering Handbook, CRC Press and Boca Raton, 2000.
[47]S. K. Yen and C. M. Lin, “Characterization of electrolytic Al2O3/CaP composite coatings on pure titanium”, J. Electrochem. Soc., vol.149, no.5, pp.79-87.
[48]G. Hannink and J. J. Chris Arts, “Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration”, Injury Intermational Journal of the care of the injured, vol.42, 2011, pp.22-25.
[49]F. C. M. Driessens, R. M. H. Verbeck, Biomenerals, CRC Press and Boca Raton, 1990, pp.37-59.
[50]T. Kijima and M. Tsutsumi, “preparation and thermal properties of dense polycrystalline oxyhydroxyapatite”, J. Am. Ceram. Soc., vol.62, no.9-10, 1992, pp.1419-1432.
[51]G. Willmann, “Medical grade hydroxyapatite: state of the art”, British Ceram. Trans., vol.95, no.5, 1995, pp.212-216.
[52]K. De Groot, Bioceramics if calcium phosphate, CRC Press and Boca Amsterdam, 1993.
[53]G. L. De Lange and K. Donath, “Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants”, Biomaterials, vol.10, no.2 ,1989, pp.121-125.
[54]S. V. Dorozhkin and M. Epple, “biological and medical significance of calcium phosphates”, Angew. Chem. Int. Ed., vol.41, no.7, 2002, pp.3130-3146.
[55]Park JB, Lakes RS. Biomaterials: An Introduction. 2nd edition, New York, Plenum Press, 1992.
[56]N. Nezafati, F. Moztarzadeh, S. Hesaraki, and M. Mozafari, “Synergistically reinforcement of a self-setting calcium phosphate cement with bioactive glass fibers”, Ceram. Int., vol.37, no.3, 2011, pp.927-934.
[57]J. R. Jones and L. L. Hench, “Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering”, J. Biomed. Mater. Res. Part B: Applied Biomater., vol.68, no.1, 2004, pp.36-44.
[58]X. Ge, Y. Leng, F. Ren, and X. Lu, “Integrity and zeta potential of fluoridated hydroxyapatite nanothick coatings for biomedical applications”, J. Mech. Biomed. Mater., vol.4, no.7, 2011, pp.1046-1056.
[59]M. Dressler, F. Dombrowski, U. Simon, J. Bornstein, V. D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar, and M. Neumann, “Influence of gelatin coatings on compressivestrength of porous hydroxyapatite ceramics”, J. Eur. Ceram. Soc., vol.31, no.4, 2011, pp.523-529.
[60]K. Zhao, Y. F. Tang, Y. S. Qin, and J. Q. Wei, “Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties”, Ceram. Int., vol.37, no.2, 2011, pp.635-639.
[61]K. Zhou, Y. Zhang, D. Zhang, X. Zhang, Z. Li, G. Liu, and T. W. Button, “Porous hydroxyapatite ceramics fabricated by an ice-templating method”, Scripta Mater., vol.64, no.5, 2011, pp.426-429.
[62]M. Yoshikawa, N. Tsuji, T. Toda, and H. Ohgushi, “Osteogenic effect of hyaluronic acid sodium salt in the pores of a hydroxyapatite scaffold”, Mater. Sci. Eng.: C, vol.27, no.2, 2007, pp.220-226.
[63]P. Q. Franco, C. F. C. Joao, J. C. Silva, and J. P. Borges, “Electrospun hydroxyapatite fibers from a simple sol-gel system”, Mater. Letters, vol.67, no.1, 2012, pp.233-236.
[64]I.Sopyan and J. Kaur, “Preparation and characterization of porous hydroxyapatite through polymeric sponge method”, Ceram. Int., vol.35, no.8, 2009, pp.3161-3168.
[65]Y. Zhang, Y. Yokogawa, X. Feng, Y. Tao, and Y. Li, “Preparation and properties of bimodal porous apatite ceramics through slip casting using different hydroxyapatite powders”, Ceram. Int., vol.36, no.1, 2010, pp. 107-113.
[66]S. Bose, S. Dasgupta, S. Tarafder, and A. Bandyopadhyay , “Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties”, Acta Bio., vol.6, no.9, 2010, pp. 3782-3790.
[67]J. Wang and L. L. Shaw, “Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness”, Biomaterials, vol.30, no.34, 2009, pp.6565-6572.