跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 14:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴士翔
研究生(外文):Shih-Hsiang Tai
論文名稱:溝渠式絕緣閘雙極性電晶體之最佳化設計
論文名稱(外文):Optimal Design of Trench Gate Insulted Gate Bipolar Transistor
指導教授:莊敏宏
指導教授(外文):Miin-Horng Juang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:92
中文關鍵詞:溝渠式絕緣閘雙極性電晶體
外文關鍵詞:Trench Gate Insulted Gate Bipolar TransistorTIGBT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來絕緣閘雙極性電晶體(IGBT)的特性及製程上有重大的改善,特別在高功率的電子元件上被廣泛的運用。在功率損耗上,溝渠式絕緣閘雙極性電晶體(Trench-Gate IGBT)表現出比傳統上平面式的絕緣閘雙極性電晶體更好的特性。此外其還具有高增益、高輸入組抗和快速的切換速度。本文將針對這些優點對600V溝渠式絕緣閘雙極性電晶體操作在100A/cm2的特性加以改善,我們利用TSUPREM-4製程模擬軟體和MEDICI元件特性模擬軟體來調變參數,以提高元件的操作速度以及減少在導通時的壓降。
另一方面,為了減少導通時的壓降和縮短切換開關的時間,各層的濃度和尺寸都需要調整到最佳的狀況。就此元件特性來說,如果操作在高電流的情況下,導通壓降固然降低,但必須犧牲切換時間,使元件切換速度變慢。因此在元件可操作在600V的情況下,導通壓降和切換時間之間必須做折衷(trade-off),設計出最佳的參數條件。

In recent years, the performance and fabrication of IGBT’s have been significantly improved and the application field of IGBT have widely been expending, especially in high power electronic device. It is reported that the Trench-Gate IGBT has superior characteristics in power loss compared to conventional planar IGBT. In this thesis, the Trench-Gate IGBT has a high power gain, high input impedance, and high switching speed. Due to these advantage, the effort to improve the Trench-Gate IGBT performances operating above 600V and 100A/cm² are the goal in this thesis. We use TSUPREM-4 process simulator and MEDICI device simulator to modulate parameters for increasing operating speed and reducing on-state voltage drop.
In order to reduce on-state voltage drop and turn-off time, the doping concentration and the size of each region are needed to modulate for optimization. In the aspect of device characteristic, it is necessary to spend a long time for switching in operating a high current density. Thus, the switching speed of this device will be slow. But, a high operating current density is good for device because that makes the on-state voltage reducing. Therefore, the trade-off between the on-state voltage drop and turn-off time is important to find the optimal parameters for this device.

Contents
Abstract (Chinese)…..……………………………i
Abstract (English)…………………………………ii
Acknowledgments…………………………………iv
Contents…………………………………………….v
Figure Captions…………………………….……..vii
Chapter 1 Introduction
1-1 Motivation……………………………...……1
1-2 The Basic Structure of IGBT……………….2
Chapter 2 The Description of the Trench-Gate Insulated Gate Bipolar Transistor
2-1 Introduction.………………………………..5
2-2 Physical Effect of Trench-Gate IGBT…….8
2-2-1 The Band Diagram..……………………..8
2-2-2 Basic Characteristic of PIN Diode..……..9
2-2-3 Accumulation Layer Effect…………….10
2-3 Forward Conduction Characteristics…….11
2-4 Breakdown Mechanism…………………..14
2-4-1 Avalanche Breakdown………………….15
2-4-2 Punch Through Breakdown………….…16
2-5 Switching Characteristics………………..17
2-6 Latch-Up Effect…………………………..19
2-7 Conclusions and Summary……………….20
Chapter 3 Optimal Design of Trench-Gate Insulated Gate Bipolar Transistor
3-1 Introduction……………………………….22
3-2 Process Flow……………………………...23
3-3 Optimization Design……………………..25
3-3-1 The Choice of P Base Region…..……….26
3-3-2 The Choice of Trench Gate…..………….27
3-3-3 The Choice of N- Drift and N+ Buffer…..28
3-4 Conclusions……………………………….30
Chapter 4 Summary and Conclusions……...32
References……………………………………34

[1] B. J. Baliga, “Power Semiconductor Device”. Boston, M.A:PWS, Chapter8,pp.426-431,1955.
[2] N. Mohan, T. M. Undeland, W. P. Robbins, “Power Electronics: Converters, Applications, and Design”, pp3-5, pp593-606,1989.
[3] B. J. Baliga, “Trends in Power Semiconductor Device”, IEEE Trans. Electron Device, vol.43, p1717~p1730, 1996
[4] B.Jayant Baliga, “The Future of Power Semiconductor Device Technology”, Proceedings of The IEEE, vol. 89 No.6, June 2001.
[5] Gehan A.J Amaratunga and Florin Udrea, “The New Generation of Power Semiconductor Devices” invited paper, IEEE pp469-478, 1996
[6] F. Udrea and G. A. J. Amaratunga, “ Theoretical comparison between trench and DMOS technologies for Insulated Gate Bipolar Transistor” IEEE Trans. Electron Device, vol.42, No.7, pp1356~1367, 1955
[7] Y. Onishi, S. Momota, Y. Kondo, M. Otsuki, N. Kumagai, “Analysis on Device Structure for Next Generation IGBT”, Proceedings of International Symposium on Power Semiconductor Device & ICs,pp85-88,1998.
[8] H. R. Chang and B. J. Baliga, “500V n-Channel Insulated Gate Bipolar Transistor with a Trench Gate Structure”, IEEE Trans on Electron Device, vol.36,NO.9, 1989
[9] F. Udrea and G. Amaratunga, “ The Trench Insulated Gate Bipolar Transistor a High Power Switching Device”, 20th international conference on microelectronics, vol.1 p369~P374 September, 1995.
[10] T. Trajkovic, F. Udrea, J. Thomson, G. A. J. Amaratunga and W. I. Milne, ”Optimum Design of 1.4kV non-punch-through trench IGBTs: the next generation of high power switching devices”, IEE Proc.-Circuit Device Syst. Vol. 148, No.2, pp71-74, April 2001.
[11] B. J. Baliga, Michael S. Adler, R. P. Love, and P. V. Gray, “The Insulated Gate Transistor: A New Three Terminal MOS Controlled Bipolar Power Device”, IEEE Trans on Electron Device, vol.ED-31, No. 6,pp821-828,June 1984.
[12] S. M. Sze, “Semiconductor Device Physics and Technology”, N.Y. WILEY, pp75-85,1985.
[13] A. R. Hefner Jr and D. L. Blackburn, “An Analytical Model for The Steady-State and Transient Characteristics of The Power Insulated Gate Bipolar Transistor”, Solid-State Electronics vol.31 No.10 pp1513~1532, 1998.
[14] Masahiro Tanaka, Satoshi Teramea, Yasushi Takahashi, Toru Takeda, “600V Trench-Gate NPT-IGBT with Excellent Low On-State Voltage”, ISPSD2000,May22-25,pp279-282,IEEE 2000.
[15] M.Nandakumar, B. J. Baliga, M. S. Shekar, S.Tandon and A. Reisman, “ A New MOS-Gate Power Thyristor Structure with Turn-Off Achieved by Controlling the Base Resistance”, IEEE Electron Device Letters, vol.12 No5, May,pp227-229, 1991.
[16] B.J Baliga, “Semiconductor for High-Voltage, Vertical Channel Field Effect Transistors”, J. Appl. Phys,pp1759-1764, 1982.
[17] Satoshi Matsumoto, Terukazu Ohno, Hiromu Ishii, and Hideo Yoshino, “A High Performance Self-Aligned UMOSFET with a Vertical Trench Contact Structure”, IEEE, Trans. On Electron Device, vol.41, pp814~818, 1994.
[18] B.J. Baliga, “Trends In Power Discrete Devices”, Proceedings of International Symposium on Power Semiconductor Devices & ICs, pp5~10, 1998.
[19] B. J. Baliga, “An overview of smart power technology”, IEEE Trans. Electron Device,vol.38,pp1568~1575, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文