|
1.P. K. Brown, and G. Wald, "Visual pigments in single rods and cones of the human retina," Science 144, 45-51 (1964).
2.J. E. Dowling, The retina: An approachable part of the brain (Harvard University Press, Cambridge, MA, 1987).
3.Y. N. Denisyuk, "On the reflection of optical properties of an object in a wave field of light scattered by it," Doklady Akademii Nauk SSSR 144, 1275-1278 (1962).
4.R. Kunzig, "The hologram revolution," Discover 23, 55-57 (2002).
5.T. Haist, M. Schonleber, and H. J. Tiziani, "Computer-generated holograms from 3d-objects written on twisted-nematic liquid crystal displays," Optics Communications 140, 299-308 (1997).
6.T. Kreis, P. Aswendt, and R. Hofling, "Hologram reconstruction using a digital micromirror device," Optical Engineering 40, 926-933 (2001).
7.M. Ozaki, J. Kato, and S. Kawata, "Surface-plasmon holography with white-light illumination," Science 332, 218-220 (2011).
8.N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science 334, 333-337 (2011).
9.S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Y. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).
10.L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Letters 12, 5750-5755 (2012).
11.S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Materials 11, 426-431 (2012).
12.X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science 335, 427-427 (2012).
13.N. Yu, and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139-150 (2014).
14.N. Meinzer, W. L. Barnes, and I. R. Hooper, "Plasmonic meta-atoms and metasurfaces," Nature Photonics 8, 889-898 (2014).
15.S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, "Infrared metamaterial phase holograms," Nature Materials 11, 450-454 (2012).
16.B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tunnermann, and T. Pertsch, "Spatial and spectral light shaping with metamaterials," Advanced Materials 24, 6300-6304 (2012).
17.Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, "Polarization switchable diffraction based on subwavelength plasmonic nanoantennas," Nano Letters 14, 294-298 (2014).
18.Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, "Plasmonic nanoparticle scattering for color holograms," Proceedings of the National Academy of Sciences of the United States of America 111, 12679-12683 (2014).
19.X. J. Ni, A. V. Kildishev, and V. M. Shalaev, "Metasurface holograms for visible light," Nature Communications 4, 2807 (2013).
20.L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, "Three-dimensional optical holography using a plasmonic metasurface," Nature Communications 4, 2808 (2013).
21.W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, "High-efficiency broadband meta-hologram with polarization-controlled dual images," Nano Letters 14, 225-230 (2014).
22.Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, "Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays," Nano Letters 14, 2485-2490 (2014).
23.G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nature Nanotechnology 10, 308-312 (2015).
24.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," Ieee Transactions on Microwave Theory and Techniques 47, 2075-2084 (1999).
25.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184-4187 (2000).
26.S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
27.W. T. Chen, C. J. Chen, P. C. Wu, S. L. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, "Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules," Optics Express 19, 12837-12842 (2011).
28.T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, "Toroidal dipolar response in a metamaterial," Science 330, 1510-1512 (2010).
29.Y. W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y. F. Chau, N. I. Zheludev, and D. P. Tsai, "Design of plasmonic toroidal metamaterials at optical frequencies," Optics Express 20, 1760-1768 (2012).
30.Y. W. Huang, W. T. Chen, P. C. Wu, V. A. Fedotov, N. I. Zheludev, and D. P. Tsai, "Toroidal lasing spaser," Scientific Reports 3, 1237 (2013).
31.B. Luk''yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The fano resonance in plasmonic nanostructures and metamaterials," Nature Materials 9, 707-715 (2010).
32.P. C. Wu, W. T. Chen, K. Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, "Magnetic plasmon induced transparency in three-dimensional metamolecules," Nanophotonics 1, 131-138 (2012).
33.M. Ricci, N. Orloff, and S. M. Anlage, "Superconducting metamaterials," Applied Physics Letters 87, 034102 (2005).
34.V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, "Modulating sub-thz radiation with current in superconducting metamaterial," Physical Review Letters 109, 243904 (2012).
35.L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology 6, 630-634 (2011).
36.Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, "Gate-tuning of graphene plasmons revealed by infrared nano-imaging," Nature 487, 82-85 (2012).
37.A. N. Grigorenko, M. Polini, and K. S. Novoselov, "Graphene plasmonics," Nature Photonics 6, 749-758 (2012).
38.V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, "Highly confined tunable mid-infrared plasmonics in graphene nanoresonators," Nano Letters 13, 2541-2547 (2013).
39.H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
40.A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nature Materials 6, 946-950 (2007).
41.Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Z. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Applied Physics Letters 90, 011112 (2007).
42.F. L. Zhang, Q. Zhao, W. H. Zhang, J. B. Sun, J. Zhou, and D. Lippens, "Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal," Applied Physics Letters 97, 134103 (2010).
43.A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, "Liquid crystal based nonlinear fishnet metamaterials," Applied Physics Letters 100, 121113 (2012).
44.T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, "Memory metamaterials," Science 325, 1518-1521 (2009).
45.Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, "Metamaterial electro-optic switch of nanoscale thickness," Applied Physics Letters 96, 143105 (2010).
46.J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, "An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared," Nature Nanotechnology 8, 252-255 (2013).
47.J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, "A magneto-electro-optical effect in a plasmonic nanowire material," Nature Communications 6, 7021 (2015).
48.K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, "Review and perspective on ultrafast wavelength-size electro-optic modulators," Laser & Photonics Reviews 9, 172-194 (2015).
49.J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, "Plasmostor: A metal-oxide-si field effect plasmonic modulator," Nano Letters 9, 897-902 (2009).
50.E. Feigenbaum, K. Diest, and H. A. Atwater, "Unity-order index change in transparent conducting oxides at visible frequencies," Nano Letters 10, 2111-2116 (2010).
51.H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, "Nanoscale conducting oxide plasmostor," Nano Letters 14, 6463-6468 (2014).
52.A. Boltasseva, and H. A. Atwater, "Low-loss plasmonic metamaterials," Science 331, 290-291 (2011).
53.G. V. Naik, J. Kim, and A. Boltasseva, "Oxides and nitrides as alternative plasmonic materials in the optical range invited," Optical Materials Express 1, 1090-1099 (2011).
54.G. V. Naik, V. M. Shalaev, and A. Boltasseva, "Alternative plasmonic materials: Beyond gold and silver," Advanced Materials 25, 3264-3294 (2013).
55.A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics 37, 5271-5283 (1998).
56.M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, "Aluminum plasmonic nanoantennas," Nano Letters 12, 6000-6004 (2012).
57.M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, "Aluminum for plasmonics," Acs Nano 8, 834-840 (2014).
58.J. Olson, A. Manjavacas, L. F. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, "Vivid, full-color aluminum plasmonic pixels," Proceedings of the National Academy of Sciences of the United States of America 111, 14348-14353 (2014).
59.X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, "Three-dimensional plasmonic stereoscopic prints in full colour," Nature Communications 5, 5361 (2014).
60.S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, "Plasmonic color palettes for photorealistic printing with aluminum nanostructures," Nano Letters 14, 4023-4029 (2014).
61.V. R. Shrestha, S. Lee, E. Kim, and D. Choi, "Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array," Nano Letters 14, 6672-6678 (2014).
62.B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, "Color-selective and cmos-compatible photodetection based on aluminum plasmonics," Advanced Materials 26, 6318-6323 (2014).
63.F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Letters 12, 4932-4936 (2012).
64.N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano Letters 12, 6328-6333 (2012).
65.P. Genevet, J. Lin, M. A. Kats, and F. Capasso, "Holographic detection of the orbital angular momentum of light with plasmonic photodiodes," Nature Communications 3, 1278 (2012).
66.P. Genevet, and F. Capasso, "Holographic optical metasurfaces: A review of current progress," Reports on Progress in Physics 78, 024401 (2015).
67.F. Wyrowski, and O. Bryngdahl, "Iterative fourier-transform algorithm applied to computer holography," Journal of the Optical Society of America A, Optics and Image Science 5, 1058-1065 (1988).
68.Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Letters 15, 3122-3127 (2015).
69.A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, and T. O. Mason, "Transparent conducting oxides for photovoltaics: Manipulation of fermi level, work function and energy band alignment," Materials 3, 4892-4914 (2010).
70.J. Yota, H. Shen, and R. Ramanathan, "Characterization of atomic layer deposition hfo2, al2o3, and plasma-enhanced chemical vapor deposition si3n4 as metal-insulator-metal capacitor dielectric for gaas hbt technology," Journal of Vacuum Science & Technology A 31, 01A134 (2013).
71.A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, "Surface plasmon polariton absorption modulator," Optics Express 19, 8855-8869 (2011).
72.F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, "Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 mu m," Optics Letters 34, 839-841 (2009).
|