跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭錦嶽
論文名稱:在超凸度量空間中推廣型KKM定理及其應用
論文名稱(外文):Generalized KKM Theorem on Hyperconvex Metric Spaces and Its Applications
指導教授:張東輝張東輝引用關係
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:數學教育學系碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:19
中文關鍵詞:超凸度量空間KKM定理同值點定理匹配定理變分不等式大中取小不等式
外文關鍵詞:Hyperconvex metric spaceKKM theoremcoincidence theoremmatching theoremvariational inequalityminimax inequality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們利用超凸度量空間的性質證明了可允許集的交集性質。利用這個性質,我們證得一個推廣型 定理、一個匹配定理及一個同值點定理。在應用方面,我們利用這個推廣型 定理,證明一些變分不等式及大中取小不等式的存在性定理。
In this paper, we use the property of hyperconvex metric space to establish an intersection property about a family of admissible sets. Applying this intersection property we get a generalized theorem, a matching theorem and a coincidence theorem. As the application, we use this generalized theorem to establish some existence theorems about variational inequalities and minimax inequalities.
1. INTRODUCTION----------------------------------------5
2. PRELIMINARIES---------------------------------------6
3. MAIN RESULTS----------------------------------------9
4. APPLICATIONS---------------------------------------14
5.REFERENCES------------------------------------------18
[1] A. Amini, M. Fakhar, and J. Zafarani, KKM mappings in metric spaces, Nonlinear Anal. 60(2005), 1045-1052.
[2] N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956) 405-439.
[3] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989.
[4] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
[5] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[6] L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in hyperconvex metric spaces, Nonlinear Ana, to appear.
[7] X. P. Ding, Y. C. Liou, and J. C. Yao, Generalized R-KKM type theorems in topological spaces with applications, Appl. Math. Letters. 18(2005), 1345-1350.
[8] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310.
[9] K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann. 266(1984), 519-537.
[10] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137.
[11] M. A. Khamsi, KKM and Ky Fan Theorems in Hyperconvex Metric Spaces, J. Math. Anal. Appl. 204(1996),298-306.
[12] W. A. Kirk, B. Sims, and G. X .Z. Yuan, The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal. 39(2000), 611-627.
[13] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122.
[14] J. T. Markin, A selection theorem for quasi-lower semicontinuous mappings in hyperconvex spaces, J. Math. Anal. Appl. 321(2006), 862-866.
[15] S. Park, Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 37(1999), 467-472.
[16] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
[17] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
[18] N. T. Vinh, Matching theorems, fixed point theorems and minimax inequalities in topological ordered spaces, Acta. Math. Vietnamica. 30(2005), 211-224.
[19] X. Wu, B. Thompson, and G. X. Yuan, Fixed point theorems of upper semicontinuous multivalued mappings with applications in hyperconvex metric spaces, J. Math. Anal. Appl. 276(2002), 80-89.
[20] G. X. Z. Yuan, The Charactreization of Generalized Metric KKM Mappings with Open Values in Hyperconvex Metric Spaces and Some Applications, J. Math. Anal. Appl. 235(1999), 315-325.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊