|
[1] H. T. Yau, “Design of adaptive sliding mode controller for chaos synchronization with uncertainties,” Chaos, Solitons, Fractals, vol. 22, no. 2, pp. 341–347, Oct. 2004. [2] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” J. Dyn. Syst. Meas. Control, vol. 97, pp. 220–227, 1975. [3] K. S. Hwang and C. S. Lin, “Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 28, no. 5, pp. 680–692, Oct. 1998. [4] H. C. Lu, J. C. Chang, and M. F. Yeh, “Design and analysis of direct-action CMAC PID controller,” Neurocomputing, vol. 70, no. 16–18, pp. 2615–2625, Oct. 2007. [5] H. C. Lu, C. Y. Chuang, and M. F. Yeh, “Design of a hybrid adaptive CMAC with supervisory controller for a class of nonlinear system,” Neurocomputing, vol. 72, no. 7–9, pp. 1920–1933, Mar. 2009. [6] Y. H. Kim and F. L. Lewis, “Optimal design of CMAC neural-network controller for robot manipulators,” IEEE Trans. Syst., Man, Cybern. C, vol. 30, no. 1, pp. 22–31, Feb. 2000. [7] M. F. Yeh and K. C. Chang, “A self-organizing CMAC network with gray credit assignment, ” IEEE Trans. Syst., Man, Cybern. B, vol. 36, no. 3, pp. 623–635, June 2006. [8] C. M. Lin and Y. F. Peng, “Missile guidance law design adaptive cerebellar model articulation controller,” IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 636–644, May 2005. [9] C. M. Lin and Y. F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 1248–1260, Apr. 2004. [10] P. E. M. Almeida and M. G. Simoes, “Parametric CMAC networks: fundamentals and applications of a fast convergence neural structure,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1551–1557, Sept./Oct. 2003. [11] P. E. M. Almeida and M. G. Simoes, “Neural optimal control of PEM fuel cells with parametric CMAC networks,” IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 237–245, Jan./Feb. 2005. [12] Y. C. Chang, “A robust tracking control for chaotic Chua’s circuits via fuzzy approach,” IEEE Trans. Circuits Syst. I, vol. 48, no. 7, pp. 889–895, July 2001. [13] C. M. Lin and C. F. Hsu, “Neural-network-based adaptive control for induction servomotor drive system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 115–123, Feb. 2002. [14] M. B. McFarland and A. J. Calise, “Adaptive nonlinear control of agile antiair missiles using neural networks,” IEEE Trans. Control Syst. Technology, vol. 8, no. 5, pp. 749–756, Sept. 2000. [15] Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-line Tuning of Fuzzy–Neural Network for Adaptive Control of Nonlinear Dynamical Systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 6, pp. 1034–1043, Dec. 1997. [16] F. J. Lin and C. H. Lin, “A permanent-magnet synchronous motor servo drive using self-constructing fuzzy neural network controller,” IEEE Trans. Energy convers., vol. 19, no. 1, pp. 66–72, Mar. 2004. [17] R. J. Wai, C. M. Lin, and Y. F. Peng, “Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor,” IEE Proc. Control Theory Appl., vol. 150, no. 3, pp. 221–232, May 2003. [18] Y. F. Peng, R. J. Wei, and C. M. Lin, “Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 35–48, Feb. 2004. [19] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Control Syst. Mag., vol. 12, no. 2, pp. 23–30, Apr. 1992. [20] T. F. Wu, P. S. Tsai, F. R. Chang, and L. S.Wang, “Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation,” IEE Proc. Control Theory Appl., vol. 153, no. 6, pp. 647–657, Nov. 2006. [21] C. T. Chiang and C. S. Lin, “CMAC with general basis functions,” Neural Netw., vol. 9, no. 7, pp. 1199–1211, Oct. 1996. [22] J. Y. Chen, P. S. Tsai, and C. C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network,” IEE Proc. Control Theory Appl., vol. 152, no. 2, pp. 133–137, Mar. 2005. [23] H. Hu and P. Y. Woo, “Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 929–940, June 2006. [24] J. J. E. Slotine and W. P. Li, Applied nonlinear control. Englewood Cliffs, NJ: Prentice-Hall, 1991. [25] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2–22, Feb. 1993. [26] L. Y. Sun, S Tong, and Y. Liu, “Adaptive backstepping sliding mode control of static var compensator,” IEEE Trans. Control Syst. Techn., vol. 19, no. 5, pp. 1178–1185, Sept. 2011. [27] C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet adaptive backstepping control for a class of nonlinear systems,” IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1175–1183, Sept. 2006. [28] M. Kumar, R. Stoll, and N. Stoll, “A robust design criterion for interpretable fuzzy models with uncertain data,” IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp. 314–328, Apr. 2006. [29] C. M. Lin and C. H. Chen, “Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller,” IEEE Trans. Syst., Man, Cybern. B, vol. 37, no. 1, pp. 110–123, Feb. 2007. [30] M. N. Lee and K. B. Jin, “A controller design method for constructing a robust track-following system,” IEEE Trans. Consumer Electron., vol. 54, no. 2, pp. 538–544, May 2008. [31] A. Ferreira, F. J. Bejarano, and L. M. Fridman, “Robust control with exact uncertainties compensation: with or without chattering?” IEEE Trans. Control Syst. Techn., vol. 19, no. 5, pp. 969–975, Sept. 2011. [32] S. Y. Chen and F. J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Trans. Control Syst. Techn., vol. 19, no. 3, pp. 636–643, May 2011. [33] S. Islam and X. P. Liu, “Robust sliding mode control for robot manipulators,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2444–2453, June 2011. [34] J. C. Lo and Y. M. Chen, “Stability issues on Takagi-Sugeno fuzzy model parametric approach,” IEEE Trans. Fuzzy Syst., vol. 7, no. 5, pp. 597–607, Oct. 1999. [35] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Trans. Fuzzy Syst., vol. 9, no. 5, pp. 751–759, Oct. 2001. [36] S. J. Lee and C. S. Ouyang, “A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning,” IEEE Trans. Fuzzy Syst., vol. 11, no. 3, pp. 341–353, June 2003. [37] J. H. Park, S. H. Huh, S. H. Kim, S. J. Seo, and G. T. Park, “Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 414–422, Mar. 2005. [38] C. F. Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems,” IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1232–1241, July 2007. [39] B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 32–43, Feb. 1996. [40] Y. C. Chang, “Robust control for a class of uncertain nonlinear time-varying systems and its application,” IEE Proc., Control Theory Appl., vol. 151, no. 5, pp. 601–609, Sept. 2004. [41] C. M. Lin, Y. F. Peng, and C. F. Hsu, “Robust cerebellar model articulation controller design for unknown systems,” IEEE Trans. Circuits Syst. II, vol. 51, no. 7, pp. 354–358, July 2004. [42] H. C. Lu and C. Y. Chuang, “Robust parametric CMAC with self-generating design for uncertain nonlinear systems,” Neurocomputing, vol. 74, no. 4, pp. 549–562, Jan. 2011. [43] S. Tong, B. Chen, and Y. Wang, “Fuzzy adaptive output feedback control for MIMO nonlinear systems,” Fuzzy Sets Syst., vol. 156, no. 2, pp. 285–299, Dec. 2005. [44] C. M. Lin, L. Y. Chen, and C. H. Chen, “RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology,” IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 708–720, May 2007. [45] C. M. Lin and C. H. Chen, “CMAC-based supervisory control for nonlinear chaotic systems,” Chaos, Solitons, Fractals, vol. 35, no. 1, pp. 40–58, Jan. 2008. [46] C. H. Chen, C. M. Lin, and T. Y. Chen, “Intelligent adaptive control for MIMO uncertain nonlinear systems,” Expert Syst. Appl., vol. 35, no. 3, pp. 865–877, Oct. 2008. [47] C. M. Lin and C. H. Chen, “Adaptive RCMAC sliding mode control for uncertain nonlinear systems,” Neural Comput. Appl., vol. 15, no. 3–4, pp.253–267, June 2006. [48] W. Y. Wang, M. L. Chan, C. C. J. Hsu, and T. T. Lee, “ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, no. 4, pp. 483–492, Aug. 2002. [49] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control,” IEEE Trans. Fuzzy Syst., vol. 6, no. 3, pp. 426–435, Aug. 1998. [50] F. J. Lin, W. J. Hwang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 41–52, Feb. 1999.
|