跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊智穎
研究生(外文):Chih-Ying Chuang
論文名稱:參數式小腦模型控制器之研究
論文名稱(外文):STUDY OF PARAMETRIC CEREBELLAR MODEL ARTICULATION CONTROLLER
指導教授:呂虹慶
指導教授(外文):Hung-Ching Lu
口試委員:呂虹慶
口試日期:2012-07-27
學位類別:博士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:105
中文關鍵詞:滑動模式控制參數式小腦模型控制器小腦模型控制器混沌系統
外文關鍵詞:SMCParametric CMACCMACchaotic system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ACKNOWLEDGMENT (IN CHINESE) i
ABSTRACT (IN CHINESE) ii
ABSTARCT (IN ENGLISH) iii
TABLES OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES x
CHAPTER
1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 2
1.3 Scope of the Present Study 6
2 TRADITIONAL CONTROLLERS 8
2.1 CMAC 8
2.1.1 One-Dimensional CMAC 9
2.1.2 Two-Dimensional CMAC 13
2.1.3 Two-Dimensional CMAC with Gaussian Basis Function 16
2.2 Parametric CMAC 18
3 ROBUST PARAMETRIC CEREBELLAR MODEL ARTICULATION CONTROLLER DESIGN 21
3.1 Problem Statement 21
3.2 RP-CAMC Design 23
3.3 Simulation Results 28
4 CONTROLLER DESIGN WITH DYNAMIC MEMORY PROGRAMMING 50
4.1 Self-Generating Design 50
4.2 Self-Organizing Design 59
4.3 Simulation Results 65
5 APPLICATIONS IN DIFFERENT NONLINEAR SYSTEMS 82
5.1 Problem Statement 82
5.2 RSOP-CAMC Design 84
5.3 Simulation Results 87
6 CONCLUSIONS 94
REFERENCES 96
BIOGRAPHICAL SKETCH 104
LIST OF PUBLICATIONS 105
[1] H. T. Yau, “Design of adaptive sliding mode controller for chaos synchronization with uncertainties,” Chaos, Solitons, Fractals, vol. 22, no. 2, pp. 341–347, Oct. 2004.
[2] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” J. Dyn. Syst. Meas. Control, vol. 97, pp. 220–227, 1975.
[3] K. S. Hwang and C. S. Lin, “Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 28, no. 5, pp. 680–692, Oct. 1998.
[4] H. C. Lu, J. C. Chang, and M. F. Yeh, “Design and analysis of direct-action CMAC PID controller,” Neurocomputing, vol. 70, no. 16–18, pp. 2615–2625, Oct. 2007.
[5] H. C. Lu, C. Y. Chuang, and M. F. Yeh, “Design of a hybrid adaptive CMAC with supervisory controller for a class of nonlinear system,” Neurocomputing, vol. 72, no. 7–9, pp. 1920–1933, Mar. 2009.
[6] Y. H. Kim and F. L. Lewis, “Optimal design of CMAC neural-network controller for robot manipulators,” IEEE Trans. Syst., Man, Cybern. C, vol. 30, no. 1, pp. 22–31, Feb. 2000.
[7] M. F. Yeh and K. C. Chang, “A self-organizing CMAC network with gray credit assignment, ” IEEE Trans. Syst., Man, Cybern. B, vol. 36, no. 3, pp. 623–635, June 2006.
[8] C. M. Lin and Y. F. Peng, “Missile guidance law design adaptive cerebellar model articulation controller,” IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 636–644, May 2005.
[9] C. M. Lin and Y. F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 1248–1260, Apr. 2004.
[10] P. E. M. Almeida and M. G. Simoes, “Parametric CMAC networks: fundamentals and applications of a fast convergence neural structure,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1551–1557, Sept./Oct. 2003.
[11] P. E. M. Almeida and M. G. Simoes, “Neural optimal control of PEM fuel cells with parametric CMAC networks,” IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 237–245, Jan./Feb. 2005.
[12] Y. C. Chang, “A robust tracking control for chaotic Chua’s circuits via fuzzy approach,” IEEE Trans. Circuits Syst. I, vol. 48, no. 7, pp. 889–895, July 2001.
[13] C. M. Lin and C. F. Hsu, “Neural-network-based adaptive control for induction servomotor drive system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 115–123, Feb. 2002.
[14] M. B. McFarland and A. J. Calise, “Adaptive nonlinear control of agile antiair missiles using neural networks,” IEEE Trans. Control Syst. Technology, vol. 8, no. 5, pp. 749–756, Sept. 2000.
[15] Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-line Tuning of Fuzzy–Neural Network for Adaptive Control of Nonlinear Dynamical Systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 6, pp. 1034–1043, Dec. 1997.
[16] F. J. Lin and C. H. Lin, “A permanent-magnet synchronous motor servo drive using self-constructing fuzzy neural network controller,” IEEE Trans. Energy convers., vol. 19, no. 1, pp. 66–72, Mar. 2004.
[17] R. J. Wai, C. M. Lin, and Y. F. Peng, “Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor,” IEE Proc. Control Theory Appl., vol. 150, no. 3, pp. 221–232, May 2003.
[18] Y. F. Peng, R. J. Wei, and C. M. Lin, “Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 35–48, Feb. 2004.
[19] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Control Syst. Mag., vol. 12, no. 2, pp. 23–30, Apr. 1992.
[20] T. F. Wu, P. S. Tsai, F. R. Chang, and L. S.Wang, “Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation,” IEE Proc. Control Theory Appl., vol. 153, no. 6, pp. 647–657, Nov. 2006.
[21] C. T. Chiang and C. S. Lin, “CMAC with general basis functions,” Neural Netw., vol. 9, no. 7, pp. 1199–1211, Oct. 1996.
[22] J. Y. Chen, P. S. Tsai, and C. C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network,” IEE Proc. Control Theory Appl., vol. 152, no. 2, pp. 133–137, Mar. 2005.
[23] H. Hu and P. Y. Woo, “Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 929–940, June 2006.
[24] J. J. E. Slotine and W. P. Li, Applied nonlinear control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[25] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2–22, Feb. 1993.
[26] L. Y. Sun, S Tong, and Y. Liu, “Adaptive backstepping sliding mode control of static var compensator,” IEEE Trans. Control Syst. Techn., vol. 19, no. 5, pp. 1178–1185, Sept. 2011.
[27] C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet adaptive backstepping control for a class of nonlinear systems,” IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1175–1183, Sept. 2006.
[28] M. Kumar, R. Stoll, and N. Stoll, “A robust design criterion for interpretable fuzzy models with uncertain data,” IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp. 314–328, Apr. 2006.
[29] C. M. Lin and C. H. Chen, “Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller,” IEEE Trans. Syst., Man, Cybern. B, vol. 37, no. 1, pp. 110–123, Feb. 2007.
[30] M. N. Lee and K. B. Jin, “A controller design method for constructing a robust track-following system,” IEEE Trans. Consumer Electron., vol. 54, no. 2, pp. 538–544, May 2008.
[31] A. Ferreira, F. J. Bejarano, and L. M. Fridman, “Robust control with exact uncertainties compensation: with or without chattering?” IEEE Trans. Control Syst. Techn., vol. 19, no. 5, pp. 969–975, Sept. 2011.
[32] S. Y. Chen and F. J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Trans. Control Syst. Techn., vol. 19, no. 3, pp. 636–643, May 2011.
[33] S. Islam and X. P. Liu, “Robust sliding mode control for robot manipulators,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2444–2453, June 2011.
[34] J. C. Lo and Y. M. Chen, “Stability issues on Takagi-Sugeno fuzzy model parametric approach,” IEEE Trans. Fuzzy Syst., vol. 7, no. 5, pp. 597–607, Oct. 1999.
[35] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Trans. Fuzzy Syst., vol. 9, no. 5, pp. 751–759, Oct. 2001.
[36] S. J. Lee and C. S. Ouyang, “A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning,” IEEE Trans. Fuzzy Syst., vol. 11, no. 3, pp. 341–353, June 2003.
[37] J. H. Park, S. H. Huh, S. H. Kim, S. J. Seo, and G. T. Park, “Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 414–422, Mar. 2005.
[38] C. F. Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems,” IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1232–1241, July 2007.
[39] B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 32–43, Feb. 1996.
[40] Y. C. Chang, “Robust control for a class of uncertain nonlinear time-varying systems and its application,” IEE Proc., Control Theory Appl., vol. 151, no. 5, pp. 601–609, Sept. 2004.
[41] C. M. Lin, Y. F. Peng, and C. F. Hsu, “Robust cerebellar model articulation controller design for unknown systems,” IEEE Trans. Circuits Syst. II, vol. 51, no. 7, pp. 354–358, July 2004.
[42] H. C. Lu and C. Y. Chuang, “Robust parametric CMAC with self-generating design for uncertain nonlinear systems,” Neurocomputing, vol. 74, no. 4, pp. 549–562, Jan. 2011.
[43] S. Tong, B. Chen, and Y. Wang, “Fuzzy adaptive output feedback control for MIMO nonlinear systems,” Fuzzy Sets Syst., vol. 156, no. 2, pp. 285–299, Dec. 2005.
[44] C. M. Lin, L. Y. Chen, and C. H. Chen, “RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology,” IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 708–720, May 2007.
[45] C. M. Lin and C. H. Chen, “CMAC-based supervisory control for nonlinear chaotic systems,” Chaos, Solitons, Fractals, vol. 35, no. 1, pp. 40–58, Jan. 2008.
[46] C. H. Chen, C. M. Lin, and T. Y. Chen, “Intelligent adaptive control for MIMO uncertain nonlinear systems,” Expert Syst. Appl., vol. 35, no. 3, pp. 865–877, Oct. 2008.
[47] C. M. Lin and C. H. Chen, “Adaptive RCMAC sliding mode control for uncertain nonlinear systems,” Neural Comput. Appl., vol. 15, no. 3–4, pp.253–267, June 2006.
[48] W. Y. Wang, M. L. Chan, C. C. J. Hsu, and T. T. Lee, “ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, no. 4, pp. 483–492, Aug. 2002.
[49] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control,” IEEE Trans. Fuzzy Syst., vol. 6, no. 3, pp. 426–435, Aug. 1998.
[50] F. J. Lin, W. J. Hwang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 41–52, Feb. 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊