跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張柏凱
研究生(外文):JHANG, BO-KAI
論文名稱:基於可見光通信之室內即時音頻收發系統的設計與實現
論文名稱(外文):Design and Implementation of an Indoor Real-Time Audio Transceiver System Based on Visible Light Communication
指導教授:胡偉文
指導教授(外文):HU, WEI-WEN
口試委員:胡偉文張家宏王鳴立
口試委員(外文):HU, WEI-WENCHANG, CHIA-HUNGWANG, MING-LI
口試日期:2019-07-12
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:56
中文關鍵詞:即時音頻傳送可見光通訊脈衝調變
外文關鍵詞:instant audio transmissionvisible light communicationspulse modulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
摘要
現今無線通訊設備使用率越來越高,無線通訊技術也朝向速度快、高頻寬,支援多用戶存取等目標發展。然而目前無線通訊技術在室內使用時大多有電磁波干擾等問題,在一般需要無電磁干擾的環境內往往造成使用上的不便。可見光通訊是除了5G以外,下世代備受矚目的無線通訊方式,可見光通訊使用光線波長介於400nm~700nm的可見光同時進行傳送與照明,此波長的光是人眼所能見到的,由於光線本身並沒有電磁波,因此對於其他電子相關產品以及無線設備並不會產生干擾,亦不會對人體造成輻射干擾。有鑑於此,本論文提出一個基於可見光通訊之室內即時音頻收發系統設計與實作,系統以一般市售照明用的LED燈具當作傳送端,並將音樂檔案轉換成PWM的訊號並透過LED傳送出去,而接收端接收光源訊號並透過濾波器濾除雜訊,再經由放大器增強推動力,以驅動揚聲設備。此外,配合所提出之系也設計了行動裝置APP,使用者可透過手機輕鬆地更改音樂撥放曲目。實驗結果驗證,本論文所提之即時音頻可見光通訊系統在室內大約10公尺內依然能夠正常地傳送音樂。
關鍵字:即時音頻傳送、可見光通訊、脈衝調變
Abstract
With the exponentially growing demand of the wireless equipment, the ultra-high data rate and band width efficiency have attracted an increasing interest in the area of wireless communication techniques. The primary problem with the existing wireless techniques is that the wireless equipment is easily interfered by the electromagnetic interference (EMI) in an indoor environment. To combat this problem, visible light communications technology is the promising wireless communication technique due to its EMI-free, unlicensed spectrum, high data rate, and so on.
Based on this motivation, this thesis develop a prototype of real-time audio transceiver system using visible light. The propose system consist of a transmitter and a receiver, where the transmitter is used to send real-time audio signal by means of commercial LED lamp and the receiver is used to recover the signal from the received optical signal. In addition, we also developed an app software to change the audio playlists. The experimental results show that the distance for receiving error-free sound signal is up to 10 meter in an indoor environment
Keywords: instant audio transmission, visible light communications, pulse modulation
目錄

摘要...............................................................ix
Abstract...........................................................x
目錄...............................................................xi
圖目錄...........................................................xiii
表目錄............................................................xvi
第一章 緒論........................................................1
第二章 可見光通訊技術文獻回顧........................................2
第三章 基於可見光通訊之即時音頻收發系統設計與實作.....................4
3.1 可見光通訊音頻傳送端設計..............................4
3.1.1 音樂訊號控制.........................................6
3.1.2 無損音樂WAV.........................................7
3.1.3 有損音樂MP3.........................................8
3.1.4 單音音樂8 bit.......................................8
3.1.5 LED驅動電路........................................11
3.2 可見光通訊音頻接收端設計............................14
3.2.1 轉阻放大器.........................................15
3.2.2 濾波器............................................18
3.2.3 帶通濾波器........................................30
3.2.4 音頻放大器........................................33
3.2.5 非反向放大器......................................34
3.3 行動裝置APP設計...................................37
3.3.1 行動裝置..........................................37
3.3.2 APP程式設計架構...................................37
3.3.3 APP功能設定......................................37
第四章 可見光通訊之即時音頻收發系統...............................40
4.1 可見光通訊音頻傳送端測試...........................40
4.2 可見光通訊音頻接收端測試...........................43
4.3 行動裝置APP測試...................................47
4.4 系統整合測試......................................48
第五章 結論與未來展望............................................54
5.1 結論.............................................54
5.2 未來展望.........................................54
參考文獻.........................................................55

圖目錄

圖2-1 可見光頻譜..................................................3
圖2-2 可見光通訊技術預期之應用.....................................3
圖3-1 系統示意圖..................................................4
圖3-2 傳送端系統架構圖............................................5
圖3-3 傳送端流程圖................................................5
圖3-4 類比音頻訊號................................................9
圖3-5 PWM音頻訊號.................................................9
圖3-6 音樂訊號的分析結果..........................................10
圖3-7 定電流控制.................................................11
圖3-8 定電壓控制.................................................11
圖3-9 CAT4104V..................................................12
圖3-10 軌道燈...................................................12
圖3-11 LED Driver 腳位..........................................13
圖3-12 Single 12V Supply........................................13
圖3-13 LED Current Derating.....................................13
圖3-14 LED 驅動電路.............................................14
圖3-15 接收端系統架構圖..........................................15
圖3-17 轉阻放大器................................................15
圖3-18 第一級轉阻放大器..........................................16
圖3-19 半角強度.................................................17
圖3-20 波長響應圖...............................................17
圖3-21 Sallen Key 基礎架構......................................18
圖3-22 Sallen Key Low Pass Filter 架構..........................19
圖3-23 雙電源UA741 Sallen Key LPF電路...........................20
圖3-24 雙電源UA741 Sallen Key LPF電路頻率響應....................21
圖3-25 雙電源UA741 Sallen Key LPF電路 10K Hz輸入輸出訊號比對......21
圖3-26 雙電源UA741 Sallen Key LPF電路 5K Hz輸入輸出訊號比對.......21
圖3-27 單電源UA741 Sallen Key LPF電路...........................22
圖3-28 單電源UA741 Sallen Key LPF電路頻率響應....................22
圖3-29 單電源UA741 Sallen Key LPF電路 10K Hz輸入輸出訊號比對......23
圖3-30 單電源UA741 Sallen Key LPF電路 5K Hz輸入輸出訊號比對......23
圖3-31 單電源OPA350PA Sallen Key LPF電路........................24
圖3-32 單電源OPA350PA Sallen Key LPF電路頻率響應.................24
圖3-33 單電源OPA350PA Sallen Key LPF 10K Hz輸入輸出訊號比對......24
圖3-34 單電源OPA350PA Sallen Key LPF 5K Hz輸入輸出訊號比對.......25
圖3-35 Sallen Key High Pass Filter 架構.........................26
圖3-36 雙電源UA741 Sallen Key HPF電路...........................26
圖3-37 雙電源UA741 Sallen Key HPF電路 頻率響應...................26
圖3-38 雙電源UA741 Sallen Key HPF 1K Hz輸入輸出訊號比對..........27
圖3-39 雙電源UA741 Sallen Key HPF 10 Hz輸入輸出訊號比對..........27
圖3-40 單電源UA741 Sallen Key HPF電路...........................28
圖3-41 單電源UA741 Sallen Key HPF電路 頻率響應...................28
圖3-42 單電源UA741 Sallen Key HPF 1K Hz輸入輸出訊號比對..........28
圖3-43 單電源UA741 Sallen Key HPF 10 Hz輸入輸出訊號比對..........28
圖3-44 單電源OPA350PA Sallen Key HPF電路........................29
圖3-45 單電源OPA350PA Sallen Key HPF電路 頻率響應................29
圖3-46 單電源 OPA350PA Sallen Key HPF 1K Hz輸入輸出訊號比對......29
圖3-47 單電源 OPA350PA Sallen Key HPF 10 Hz輸入輸出訊號比對......30
圖3-48 單電源 OPA350PA高通低通串聯電路...........................30
圖3-49 單電源 OPA350PA高通低通串聯電路 頻率響應圖.................31
圖3-50 單電源 OPA350PA高通低通串聯電路 5K Hz輸入輸出訊號比對.......31
圖3-51 單電源 OPA350PA高通低通串聯電路 10 Hz輸入輸出訊號比對.......31
圖3-52 單電源 OPA350PA Band Pass電路圖..........................32
圖3-53 單電源 OPA350PA Band Pass電路圖 頻率響應圖................32
圖3-54 單電源 OPA350PA高通低通串聯電路 5K Hz輸入輸出訊號比對.......32
圖3-55 單電源 OPA350PA高通低通串聯電路 10 Hz輸入輸出訊號比對.......33
圖3-56 LM386腳位圖..............................................34
圖3-57 LM386 音頻放大電路.......................................34
圖3-58 非反向放大器電路.........................................35
圖3-59 非反向放大器電路100uF值之頻率響應圖.......................35
圖3-60 非反向放大器電路10uF值之頻率響應圖........................35
圖3-61 非反向放大器電路無電容值之頻率響應圖......................36
圖3-62 非反向放大器電路100uF之10K Hz輸入輸出訊號比對.............36
圖3-63 非反向放大器電路10uF之10K Hz輸入輸出訊號比對..............36
圖3-64 非反向放大器電路無電容值之10K Hz輸入輸出訊號比對...........36
圖3-65 APP架構圖...............................................37
圖3-66 藍芽初始化設定...........................................38
圖3-67 藍芽選單觸發事件.........................................38
圖3-68 選歌扭設定...............................................39
圖3-69 取消鍵設定...............................................39
圖4-1 200 Hz輸入與輸出比對......................................40
圖4-2 1K Hz輸入與輸出比對.......................................40
圖4-3 5K Hz輸入與輸出比對.......................................41
圖4-4 10K Hz輸入與輸出比對......................................41
圖4-5 音頻傳送端電路............................................42
圖4-6 音頻接收電路A部分.........................................43
圖4-7 音頻接收電路B部分.........................................43
圖4-8 1.5公尺TIA輸出結果........................................44
圖4-9 1.5公尺 濾波器輸出結果.....................................44
圖4-10 1.5公尺 功率放大器輸出結果................................44
圖4-11 1.5公尺 非反向放大器輸出結果..............................44
圖4-12 APP主頁面................................................47
圖4-13 藍芽連線選單.............................................47
圖4-14 連線狀態確認.............................................47
圖4-15 歌曲編號訊息.............................................47
圖4-16 音樂訊號的輸出波型........................................48
圖4-17 LED Driver輸出波型.......................................49
圖4-18 0度角前級輸出比對.........................................49
圖4-19 0度角濾波器輸出比對.......................................50
圖4-20 0度角後級輸出比對.........................................50
圖4-21 正45度角前級輸出比對......................................51
圖4-22 正45度角濾波器輸出比對....................................51
圖4-23 正45度角後級輸出比對......................................52
圖4-24 負45度角前級輸出比對......................................52
圖4-25 負45度角濾波器輸出比對....................................53
圖4-26 負45度角後級輸出比對......................................53

表目錄

表3-1 音樂格式表................................................6
表3-2 WAV格式表.................................................7
表3-3 音階頻率對應表............................................10
表3-4 電流調節對照表............................................12
表3-5光電二極體規格.............................................17
表3-6 LM386電器特性表..........................................33
表4-1 輸入與輸出電壓比照表......................................42
表4-2 3公尺有室內光時 各級輸出結果...............................45
表4-3 3公尺 無室內光時 各級輸出結果..............................45
表4-4 4.5公尺 有室內光時 各級輸出結果............................45
表4-5 4.5公尺 無室內光時 各級輸出結果............................46
表4-6 7公尺 有室內光時 各級輸出結果..............................46
表4-7 7公尺 無室內光時 各級輸出結果..............................46




[1].P. Namonta, and P. Cherntanomwong, “Real Time Vital Sign Transmission Using IEEE 802.15.7 VLC PHY-I Transceiver,” International Electrical Engineering Congress (IEECON), Pattaya Thailand, Mar. 2017.
[2].S. Fuada1, A. P. Putra, Y. Aska, and T. Adiono, “Trans-impedance amplifier (TIA) design for visible light communication (VLC) using commercially available OP-AMP,” in Proc. Int. Conf. on Infor. Tech., Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, Oct. 2016, pp. 31-36.
[3].T. Adiono, and S. Fuada, “Optical interference noise filtering over visible light communication system utilizing analog high-pass filter circuit,” International Symposium on Nonlinear Theory and Its Applications(NOLTA), Cancun, Mexico, Dec. 2017, pp. 616-619.
[4].S. Liu, A. Minato, S. Ozawa, and M. Nakagawa, “A new lighting communication system for audio signal with white LED,” Journal Light & Vis Env. vol. 31, no. 2, pp. 9-13, Feb. 2007.
[5].L. Chieh, and P. Virtus, “A fully integrated audio, video, and data VLC transceiver system for smartphones and tablets,” IEEE International Symposium on Consumer Electronics (ISCE), Nanyang Avenue, Jun. 2013,pp 249-250. .
[6].B. Lin, X. Tang, Z. Ghassemlooy, C. Lin, M. Zhang, Z. Z. Y. Wu, and H. Li, “A NOMA scheme for visible Light communications using a Single carrier transmission,” First South American Colloquium on Visible Light Communications (SACVLC), Fujian Normal University, Nov. 2017,pp. 1-4 .
[7].P. He, Z. Huang, M. Huang, W. Li, M. Liu, and Y. Ji, “Indoor intelligent visible light system based on triple-domain-cooperation scheme,” Int. Conf. on Optical Communications and Networks (ICOCN), Wuzhen China, Aug. 2017.
[8].D. Aguirre, R. Navarrete, I. Soto, and S. Gutierrez, “implementation of an emitting LED circuit in a visible light communications positioning system,” First South American Colloquium on Visible Light Communications (SACVLC), Santiago Chile, Nov. 2017,pp 1-4.
[9].Z. Liu, H. S. Li, Q. Cheng, Y. Wang, W. Zhao, Z. Zhang, Y. and Y. Tong, “Design and achievement of the visible light audio communication system,” IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) , Xi'an China, Oct. 2016,pp. 1770-1773.

[10].C. Gao, and H. Li, “An effective real-time audio segmentation method based on time-frequency energy analysis,” Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, Shenyang China, . Nov. 2017,pp. 999-1002.
[11].Visible light communication. WIKI.
Retrieved fromhttps://reurl.cc/5xeWv(July 16, 2019)
[12].Waveform audio format. WIKI.
Retrieved fromhttps://reurl.cc/mOaOM(October 29, 2018)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top