跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇裕閔
研究生(外文):Yu-Min Su
論文名稱:萘衍生物構成藍光材料的合成及應用在有機發光二極體之研究
論文名稱(外文):Synthesis of Blue Luminescent Materials Consist of Naphthalene Derivative with Application to Organic Light Emitting Diodes
指導教授:黃文堯黃文堯引用關係
指導教授(外文):Wen-Yao Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:藍光高立體障礙性咔唑有機發光材料
外文關鍵詞:blue lighthindered structureAnthraceneCarbazoleorganic luminescent materialsNaphthalene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機發光材料當今在照明和顯示中占著重要的一環,其中藍光材料更是製造全彩有機發光元件的關鍵元素之一,但在電致發光性能仍具有挑戰,包括效率、色純度、穩定性等,因此成為一個熱門的研究領域。
此論文中成功開發出藍色有機發光材料分別PA、POA與CzP,並探討其在熱穩定性、光物理特性和電致發光性能的研究。利用常見主客體架構設計出三種小分子有機藍光材料,主體材料我們選擇萘(Naphthalene)衍生物和咔唑(Carbazole),客體材料則是蒽(Anthracene)衍生物,藉由高立體障礙性的基團及醚基來保留主要材料的發光特性,同時也改變合成物的能階,調整成適當能隙。
合成出材料經由質譜儀確認結構無誤,在熱分析方面表現相當優異,熱裂解溫度(Td5%)皆高於455℃,玻璃轉化溫度(Tg)介於190℃至200℃之間,單體合成小分子後熱穩定性皆有相當的提升。薄膜狀態下,PA、POA與CzP在322nm至394nm
顯示出紫外光與可見光吸收波長,而放光波長分別在448nm、438nm和404nm處有最大的光致發光,意味著三種小分子材料具有高穩定度的藍色螢光。
在元件部分,將三種合成小分子以非摻雜形式作為發光層,元件結構為:ITO/NPB(40nm)/發光層(30nm)/TPBi(30nm)/LiF(1nm)/Al(100nm)。其中PA元件顯示較好的性能表現,最小驅動電壓5.2V、最大亮度8221cd/m2、最大電流效率1.13cd/A、外部量子效率0.65%,而CzP元件在光色方面則有優異藍光,CIE座標為(0.16,0.08)。
Organic luminescent materials play on important role in lighting and display today. Blue light is one of the key elements to make full-color organic light-emitting diodes. However, there are still challenges in electroluminescence, including efficiency, color purity, stability, etc. So it has become a hot field of research.
In this reaseach, blue organic luminescent materials, PA, POA and CzP were successfully developed and their thermal stabilities, photophysical properties, and electroluminescence performances were investigated. Three synthesized molecules were designed consisting of host combined with guest. We chose Naphthalene derivatives and Carbazole as the host and Anthracene derivatives as the guest. The sterically hindered structure and ether group were used to retain the luminescent properties of the materials while approached the suitable bandgap by changing the energy level of the synthesis.
The compounds were confirmed by 1H NMR and mass data. The Td5% were higher than 455°C and the Tg were between 190°C to 200°C which exhibited a good thermally stability. In the film state, PA, POA and CzP showed the absorption wavelength maximum in the range of 322 to 394 nm, whereas the emission wavelengths maximum showed 448, 438 and 404 nm, respectively. These materials could also emit stable blue light.
To explore the EL performances of three synthesized molecules, these fluorophores were applied as an emitting layer to fabricate non-doped oled diodes. The EL device structure is ITO/NPB(40nm)/EML(30nm)/TPBi(30nm)/LiF(1nm)/Al(100nm). A OLED based on PA exhibited the better performance with the turn on voltage of 4.5V, brightness of 8221cd/m2, current efficiency of 1.13cd/A and external quantum efficiency of 0.65%. In terms of light color, the CzP device emited excellent blue light with CIE coordinates of (0.16, 0.08).
論文審定書 ................................................................................................................... i
致謝 .............................................................................................................................. ii
摘要 ............................................................................................................................. iii
Abstract ....................................................................................................................... iv
目錄 .............................................................................................................................. v
圖目錄 ....................................................................................................................... viii
表目錄 ......................................................................................................................... xi
第一章 緒論 ................................................................................................................ 1
1.1前言 ................................................................................................................................ 1
1.2有機發光二極體發展 ..................................................................................................... 1
1.3有機發光二極體種類 ..................................................................................................... 4
1.4有機材料與其發光二極體原理 ...................................................................................... 5
1.5能量轉移機制................................................................................................................. 7
1.5.1輻射能量轉移 .......................................................................................................... 8
1.5.2非輻射能量轉移 ...................................................................................................... 8
1.6量子效率 ........................................................................................................................ 9
1.7濃度淬熄效應............................................................................................................... 10
1.8 CIE座標 ....................................................................................................................... 11
1.9文獻回顧 ...................................................................................................................... 12
1.10研究動機 .................................................................................................................... 17
第二章 實驗儀器介紹與原理 ................................................................................... 18
2.1鑑定分析儀器............................................................................................................... 18
2.1.1高磁場液態核磁共振儀器(Nuclear Magnetic Resonance,NMR) ....................... 18
2.1.2基質輔助雷射脫附游離飛行質譜儀(MALDI TOF/TOF) .................................... 19
2.1.3高效液相層析儀(High Performance Liquid Chromatography, HPLC) ............... 20
2.2熱分析儀器 .................................................................................................................. 21
2.2.1熱重分析儀(Thermogravimetric Analyzer,TGA)................................................ 21
2.2.2熱示差掃描卡量計(Differential Scanning Calorimetr,DSC) ............................... 22
2.3光電學分析儀器 ........................................................................................................... 23
2.3.1紫外與可見光光譜儀(UV-Vis Spectrometer,UV-Vis) ...................................... 23
2.3.2螢光光譜儀(Fluorescence spectrometer,PL) ....................................................... 24
2.3.3光電子光譜分析儀(Photo-Electron Spectroscopy in Air,PESA) ........................ 25
2.4元件製程相關儀器 ....................................................................................................... 26
2.4.1紫外光臭氧清洗機(UV-Ozone) ........................................................................... 26
2.4.2手套箱(Glove Box) ............................................................................................... 27
2.4.3蒸鍍機(Evaporator)............................................................................................... 27
2.4.4元件量測系統 ........................................................................................................ 28
第三章 實驗 .............................................................................................................. 29
3.1實驗材料 ...................................................................................................................... 29
3.1.1材料來源................................................................................................................ 29
3.1.2材料總表................................................................................................................ 29
3.2實驗流程 ...................................................................................................................... 31
3.2.1 Naphthalene衍生物單體合成 ................................................................................ 31
3.2.2 Anthracene衍生物單體合成 ................................................................................. 32
3.2.3藍光小分子合成 .................................................................................................... 32
3.2.4材料分析與元件製作流程 ..................................................................................... 33
3.3材料合成步驟............................................................................................................... 34
3.3.1 Naphthalene衍生物合成方法 ................................................................................ 34
3.3.2 Anthracene衍生物合成方法 ................................................................................. 39
3.3.3藍光小分子合成方法 ............................................................................................ 40
3.4元件製作 ...................................................................................................................... 43
第四章 結果與討論 ................................................................................................... 44
4.1材料鑑定 ...................................................................................................................... 44
4.2熱性質 .......................................................................................................................... 45
4.2.1熱重分析(Thermogravimetric analyzer,TGA) .................................................... 45
4.2.2熱示差掃描卡量計(Differential scanning calorimetry,DSC)................................ 47
4.3光學性質 ...................................................................................................................... 49
4.3.1單體光譜分析 ........................................................................................................ 49
4.3.2藍光小分子光譜分析 ............................................................................................ 51
4.3.3理論CIE座標 ....................................................................................................... 57
4.4分子理論模擬............................................................................................................... 58
4.5能階分析 ...................................................................................................................... 59
4.6電致發光元件測試 ....................................................................................................... 62
第五章 結論 .............................................................................................................. 69
第六章 參考文獻 ...................................................................................................... 70
附錄 ............................................................................................................................ 74
[1]T.-L. Wu et al., "Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off," Nature Photonics, vol. 12, no. 4, p. 235, 2018.
[2]I. Jurrien. (2018). Opvouwbare smartphone 2019-2022 onderzoeksrapport. Available: https://nl.letsgodigital.org/smartphones/opvouwbare-smartphone/
[3]M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
[4]D. F. Williams and M. Schadt, "DC and pulsed electroluminescence in anthracene and doped anthracene crystals," The Journal of Chemical Physics, vol. 53, no. 9, pp. 3480-3487, 1970.
[5]C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987.
[6]J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, p. 539, 1990.
[7]N. Greenham, S. Moratti, D. Bradley, R. Friend, and A. Holmes, "Efficient light-emitting diodes based on polymers with high electron affinities," Nature, vol. 365, no. 6447, p. 628, 1993.
[8]A. Kraft, A. C. Grimsdale, and A. B. Holmes, "Electroluminescent conjugated polymers—seeing polymers in a new light," Angewandte Chemie International Edition, vol. 37, no. 4, pp. 402-428, 1998.
[9]M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, no. 6698, p. 151, 1998.
[10]A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, "Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence," Advanced Materials, vol. 21, no. 47, pp. 4802-4806, 2009.
[11]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, vol. 492, no. 7428, p. 234, 2012.
[12]T. Hebner, C. Wu, D. Marcy, M. Lu, and J. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Applied Physics Letters, vol. 72, no. 5, pp. 519-521, 1998.
[13]陳金鑫 and 黃孝文, OLED 夢幻顯示器. 五南, 2007.
[14]T. Sugimoto and K. Fukutani, "Electric-field-induced nuclear-spin flips mediated by enhanced spin–orbit coupling," Nature Physics, vol. 7, no. 4, p. 307, 2011.
[15]C. Tang, S. VanSlyke, and C. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, 1989.
[16]C. Devadoss, P. Bharathi, and J. S. Moore, "Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient," Journal of the American Chemical Society, vol. 118, no. 40, pp. 9635-9644, 1996.
[17]T. Forster, "10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation," Diss. Faraday Soc., vol. 27, pp. 7-17, 1959.
[18]D. L. Dexter, "A theory of sensitized luminescence in solids," The Journal of Chemical Physics, vol. 21, no. 5, pp. 836-850, 1953.
[19]M. A. Baldo, D. F. O’brien, M. E. Thompson, and S. R. Forrest, "Excitonic singlet-triplet ratio in a semiconducting organic thin film," Physical Review B, vol. 60, no. 20, p. 14422, 1999.
[20]C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," Journal of Applied Physics, vol. 90, no. 10, pp. 5048-5051, 2001.
[21]V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, "Weak microcavity effects in organic light-emitting devices," Physical Review B, vol. 58, no. 7, p. 3730, 1998.
[22]宋心琦, 周福添, and 劉劍波, 光化學. 五南, 2004.
[23]L. Wang, Z.-Y. Wu, W.-Y. Wong, K.-W. Cheah, H. Huang, and C. H. Chen, "New blue host materials based on anthracene-containing dibenzothiophene," Organic Electronics, vol. 12, no. 4, pp. 595-601, 2011.
[24]J. H. Seo et al., "Efficient Deep-Blue Organic Light-Emitting Diodes," Molecular Crystals and Liquid Crystals, vol. 538, no. 1, pp. 84-90, 2011.
[25]張銘賢, "新穎發藍光聚芳香醚高分子之合成及其在發光二極體上之應用研究," 光電工程學系, 國立中山大學, 2012.
[26]Y. Yu et al., "Highly efficient deep-blue organic electroluminescent devices (CIE y≈ 0.08) doped with fluorinated 9, 9′-bianthracene derivatives (fluorophores)," Journal of Materials Chemistry C, vol. 1, no. 48, pp. 8117-8127, 2013.
[27]葉傳銘, "萘衍生物於藍光聚芳香醚發材料之合成及其在有機發光二極體上之研究," 光電工程學系, 國立中山大學, 2016.
[28]P. I. Shih, C. Y. Chuang, C. H. Chien, E. G. Diau, and C. F. Shu, "Highly efficient non‐doped blue‐light‐emitting diodes based on an anthrancene derivative end‐capped with tetraphenylethylene groups," Advanced Functional Materials, vol. 17, no. 16, pp. 3141-3146, 2007.
[29]M.-T. Lee, H.-H. Chen, C.-H. Liao, C.-H. Tsai, and C. H. Chen, "Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9, 10-di (2-naphthyl) anthracene," Applied physics letters, vol. 85, no. 15, pp. 3301-3303, 2004.
[30]K. Justin Thomas, J. T. Lin, Y.-T. Tao, and C.-W. Ko, "Light-emitting carbazole derivatives: potential electroluminescent materials," Journal of the American Chemical Society, vol. 123, no. 38, pp. 9404-9411, 2001.
[31]莊勳豐, "低能隙噻吩共聚高分子之合成及其光電特性研究," 光電工程學系, 國立中山大學, 2011.
[32]何基任, "應用於質子交換膜之磺酸化聚芳香醚高分子," 光電工程學系, 國立中山大學, 2011.
[33]阮凡軒, "新穎雙酚單體合成聚芳香醚高分子在軟性基板上之製備與特性研究," 光電工程學系, 國立中山大學, 2011.
[34]黃資勝, "雙芴環聚芳香醚之合成及其應用於高分子發光二極體," 光電工程學系, 國立中山大學, 2015.
[35]L. Wang et al., "Highly efficient white organic light-emitting diodes with single small molecular emitting material," Applied physics letters, vol. 91, no. 18, p. 183504, 2007.
[36]O. Usluer et al., "Fluorene‐Carbazole Dendrimers: Synthesis, Thermal, Photophysical and Electroluminescent Device Properties," Advanced Functional Materials, vol. 20, no. 23, pp. 4152-4161, 2010.
[37]C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, "Effect of LiF/metal electrodes on the performance of plastic solar cells," Applied physics letters, vol. 80, no. 7, pp. 1288-1290, 2002.
[38]S. Kumar, D. Kumar, Y. Patil, and S. Patil, "Fluoranthene derivatives as blue fluorescent materials for non-doped organic light-emitting diodes," Journal of Materials Chemistry C, vol. 4, no. 1, pp. 193-200, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊