|
[1]T.-L. Wu et al., "Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off," Nature Photonics, vol. 12, no. 4, p. 235, 2018. [2]I. Jurrien. (2018). Opvouwbare smartphone 2019-2022 onderzoeksrapport. Available: https://nl.letsgodigital.org/smartphones/opvouwbare-smartphone/ [3]M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963. [4]D. F. Williams and M. Schadt, "DC and pulsed electroluminescence in anthracene and doped anthracene crystals," The Journal of Chemical Physics, vol. 53, no. 9, pp. 3480-3487, 1970. [5]C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987. [6]J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, p. 539, 1990. [7]N. Greenham, S. Moratti, D. Bradley, R. Friend, and A. Holmes, "Efficient light-emitting diodes based on polymers with high electron affinities," Nature, vol. 365, no. 6447, p. 628, 1993. [8]A. Kraft, A. C. Grimsdale, and A. B. Holmes, "Electroluminescent conjugated polymers—seeing polymers in a new light," Angewandte Chemie International Edition, vol. 37, no. 4, pp. 402-428, 1998. [9]M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, no. 6698, p. 151, 1998. [10]A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, "Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence," Advanced Materials, vol. 21, no. 47, pp. 4802-4806, 2009. [11]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, vol. 492, no. 7428, p. 234, 2012. [12]T. Hebner, C. Wu, D. Marcy, M. Lu, and J. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Applied Physics Letters, vol. 72, no. 5, pp. 519-521, 1998. [13]陳金鑫 and 黃孝文, OLED 夢幻顯示器. 五南, 2007. [14]T. Sugimoto and K. Fukutani, "Electric-field-induced nuclear-spin flips mediated by enhanced spin–orbit coupling," Nature Physics, vol. 7, no. 4, p. 307, 2011. [15]C. Tang, S. VanSlyke, and C. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, 1989. [16]C. Devadoss, P. Bharathi, and J. S. Moore, "Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient," Journal of the American Chemical Society, vol. 118, no. 40, pp. 9635-9644, 1996. [17]T. Forster, "10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation," Diss. Faraday Soc., vol. 27, pp. 7-17, 1959. [18]D. L. Dexter, "A theory of sensitized luminescence in solids," The Journal of Chemical Physics, vol. 21, no. 5, pp. 836-850, 1953. [19]M. A. Baldo, D. F. O’brien, M. E. Thompson, and S. R. Forrest, "Excitonic singlet-triplet ratio in a semiconducting organic thin film," Physical Review B, vol. 60, no. 20, p. 14422, 1999. [20]C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," Journal of Applied Physics, vol. 90, no. 10, pp. 5048-5051, 2001. [21]V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, "Weak microcavity effects in organic light-emitting devices," Physical Review B, vol. 58, no. 7, p. 3730, 1998. [22]宋心琦, 周福添, and 劉劍波, 光化學. 五南, 2004. [23]L. Wang, Z.-Y. Wu, W.-Y. Wong, K.-W. Cheah, H. Huang, and C. H. Chen, "New blue host materials based on anthracene-containing dibenzothiophene," Organic Electronics, vol. 12, no. 4, pp. 595-601, 2011. [24]J. H. Seo et al., "Efficient Deep-Blue Organic Light-Emitting Diodes," Molecular Crystals and Liquid Crystals, vol. 538, no. 1, pp. 84-90, 2011. [25]張銘賢, "新穎發藍光聚芳香醚高分子之合成及其在發光二極體上之應用研究," 光電工程學系, 國立中山大學, 2012. [26]Y. Yu et al., "Highly efficient deep-blue organic electroluminescent devices (CIE y≈ 0.08) doped with fluorinated 9, 9′-bianthracene derivatives (fluorophores)," Journal of Materials Chemistry C, vol. 1, no. 48, pp. 8117-8127, 2013. [27]葉傳銘, "萘衍生物於藍光聚芳香醚發材料之合成及其在有機發光二極體上之研究," 光電工程學系, 國立中山大學, 2016. [28]P. I. Shih, C. Y. Chuang, C. H. Chien, E. G. Diau, and C. F. Shu, "Highly efficient non‐doped blue‐light‐emitting diodes based on an anthrancene derivative end‐capped with tetraphenylethylene groups," Advanced Functional Materials, vol. 17, no. 16, pp. 3141-3146, 2007. [29]M.-T. Lee, H.-H. Chen, C.-H. Liao, C.-H. Tsai, and C. H. Chen, "Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9, 10-di (2-naphthyl) anthracene," Applied physics letters, vol. 85, no. 15, pp. 3301-3303, 2004. [30]K. Justin Thomas, J. T. Lin, Y.-T. Tao, and C.-W. Ko, "Light-emitting carbazole derivatives: potential electroluminescent materials," Journal of the American Chemical Society, vol. 123, no. 38, pp. 9404-9411, 2001. [31]莊勳豐, "低能隙噻吩共聚高分子之合成及其光電特性研究," 光電工程學系, 國立中山大學, 2011. [32]何基任, "應用於質子交換膜之磺酸化聚芳香醚高分子," 光電工程學系, 國立中山大學, 2011. [33]阮凡軒, "新穎雙酚單體合成聚芳香醚高分子在軟性基板上之製備與特性研究," 光電工程學系, 國立中山大學, 2011. [34]黃資勝, "雙芴環聚芳香醚之合成及其應用於高分子發光二極體," 光電工程學系, 國立中山大學, 2015. [35]L. Wang et al., "Highly efficient white organic light-emitting diodes with single small molecular emitting material," Applied physics letters, vol. 91, no. 18, p. 183504, 2007. [36]O. Usluer et al., "Fluorene‐Carbazole Dendrimers: Synthesis, Thermal, Photophysical and Electroluminescent Device Properties," Advanced Functional Materials, vol. 20, no. 23, pp. 4152-4161, 2010. [37]C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, "Effect of LiF/metal electrodes on the performance of plastic solar cells," Applied physics letters, vol. 80, no. 7, pp. 1288-1290, 2002. [38]S. Kumar, D. Kumar, Y. Patil, and S. Patil, "Fluoranthene derivatives as blue fluorescent materials for non-doped organic light-emitting diodes," Journal of Materials Chemistry C, vol. 4, no. 1, pp. 193-200, 2016.
|