|
[1]Aiello, B., Ishai, Y. & Reingold, O. (2001). Priced oblivious transfer: How to sell digital goods, Lecture Notes in Computer Science, 2045, 119-135. doi:10.1007/3-540-44987-6_8. [2]Bellare, M. & Micali, S. (1989). Non-Interactive Oblivious Transfer and Applications. Advances in Cryptology — CRYPTO’ 89 Proceedings, 435, 547-557. doi:10.1007/0-387-34805-0_48. [3]Blum, M. (1981). Three applications of the oblivious transfer: Part I: Coin flipping by telephone; Part II: How to exchange secrets; Part III: How to send certified electronic mail. University of California, Berkeley, CA. [4]Brassard, G. & Crépeau, C. (1997, May). Oblivious transfers and privacy amplification. In Proceedings of the 16th annual international conference on Theory and application of cryptographic techniques, 16(4), 219-237. [5]Cegielski, P. & Richard, D. (1999). On arithmetical first-order theories allowing encoding and decoding of lists. Theoretical Computer Science, 222(1), 55-75. [6]Cégielski, P. & Richard, D. (2001). Decidability of the theory of the natural integers with the cantor pairing function and the successor. Theoretical Computer Science, 257(1), 51-77. [7]Chang, C. C. & Lee, J. S. (2009). Robust t-out-of-n oblivious transfer mechanism based on CRT. Journal of network and computer applications, 32(1), 226-235. [8]Chen, S. W., Chiang, D. L., Liu, C. H., Chen, T. S., Lai, F., Wang, H. & Wei, W. (2016). Confidentiality Protection of Digital Health Records in Cloud Computing. Journal of medical systems, 40(5), 1-12. [9]Chen, Y., Chou, J. S. & Hou, X. W. (2010). A novel k-out-of-n Oblivious Transfer Protocols Based on Bilinear Pairings. IACR Cryptology ePrint Archive, 2010, 27. [10]Chor, B., Kushilevitz, E., Goldreich, O. & Sudan, M. (1998). Private information retrieval. Journal of the ACM (JACM), 45(6), 965-981. [11]Chou, T. & Orlandi, C. (2015). The Simplest Protocol for Oblivious Transfer. Progress in Cryptology--LATINCRYPT 2015, 40-58. doi:10.1007/978-3-319-22174-8_3. [12]Di Crescenzo, G., Malkin, T. & Ostrovsky, R. (2000). Single database private information retrieval implies oblivious transfer. International Conference on the Theory and Applications of Cryptographic Techniques, 122-138. doi:10.1007/3-540-45539-6_10. [13]Even, S., Goldreich, O. & Lempel, A. (1985). A randomized protocol for signing contracts. Communications of the ACM, 28(6), 637-647. [14]Fueter, R. & Pólya, G. (1923). Rationale abzählung der gitterpunkte. Vierteljschr. Naturforsch. Ges. Zürich, 58, 380-386. [15]Harn, L. & Lin, H. Y. (1990). Noninteractive oblivious transfer. Electronics Letters, 26(10), 635-636. [16]Huang, H. F. & Chang, C. C. (2007). A new t-out-n oblivious transfer with low bandwidth. Applied Mathematical Sciences, 1(7), 311-320. [17]Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of computation, 48(177), 203-209. [18]Kocher, P. C. (1996, August). Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Annual International Cryptology Conference, 104-113. doi:10.1007/3-540-68697-5_9. [19]Li, J. Y.(2008). Oblivious Transfer Protocols Based on Elliptic Curve Cryptography, Department of Information Management, Southern Taiwan University of Science and Technology, unpublished. [20]Lisi, M. (2007). Some remarks on the Cantor pairing function. Le Matematiche, 62(1), 55-65. [21]Merkle, R. C. (1980, April). Protocols for Public Key Cryptosystems. IEEE Symposium on Security and privacy, 122. doi:10.1109/SP.1980.10006. [22]Miller, V. S. (1985). Use of elliptic curves in cryptography. Advances in Cryptology—CRYPTO’85 Proceedings, 417-426. doi:10.1007/3-540-39799-X_31. [23]Mu, Y., Zhang, J. & Varadharajan, V. (2002). m out of n Oblivious Transfer. Proc. of the 7th Australasian Conference on Information Security and Privacy (ACISP'02), LNCS 2384, 395-405. doi:10.1007/3-540-45450-0_30. [24]Mu, Y., Zhang, J., Varadharajan, V. & Lin, Y. X. (2003). Robust non-interactive oblivious transfer. The Institute of Electrical and Electronics Engineers, 7(4), 153-155. [25]Naor, M. & Pinkas, B. (1999). Oblivious transfer and polynomial evaluation. Proceedings of the thirty-first annual ACM symposium on Theory of computing, 245-254. doi:10.1145/301250.301312. [26]Naor, M. & Pinkas, B. (2001). Efficient oblivious transfer protocols. Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, 448-457. [27]Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. International Conference on the Theory and Applications of Cryptographic Techniques, 223-238. doi:10.1007/3-540-48910-X_16. [28]Parakh, A. (2006). Oblivious Transfer Using Elliptic Curves. IEEE CIC'06. 15th International Conference on Computing, 323-328. doi:10.1109/CIC.2006.49. [29]Parakh, A. (2012). Communication Efficient Oblivious Transfer Using Elliptic Curves. IEEE 14th International Symposium on High-Assurance Systems Engineering (HASE), 173-174. doi:10.1109/HASE.2012.14. [30]Rabin, M. O. (1981). How to Exchange Secrets with Oblivious Transfer. IACR Eprint archive. [31]Rivest, R. L. Shamir, A. & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120-126. [32]Stern, J. P. (1998). A new and efficient all-or-nothing disclosure of secrets protocol. International Conference on the Theory and Application of Cryptology and Information Security, 357-371. doi:10.1007/3-540-49649-1_28. [33]Tarau, P. (2012). Deriving a fast inverse of the generalized cantor N-tupling bijection. LIPIcs-Leibniz International Proceedings in Informatics, 17, 312-322. [34]Tzeng, W. G. (2004). Efficient 1-out-of-n oblivious transfer schemes with universally usable parameters. IEEE Transactions on Computers, 53(2), 232-240. [35]Wakaha, O., & Ryota, S. (2004). k out of n Oblivious Transfer without Random Oracle. IEICE Transactions on Fundamentals of Electronics, Communication and Computer Sciences, 87(1), 147-15. [36]Wu, Q. H., Zhang, J. H. & Wang, Y. M. (2003). Practical t-out-n oblivious transfer and its applications. International Conference on Information and Communications Security, 226-237. doi:10.1007/978-3-540-39927-8_21. [37]Zeng, B., Tang, X., Xu, P. & Jing, J. (2011). Practical Frameworks For h-Out-Of-n Oblivious Transfer With Security Against Covert and Malicious Adversaries. IEEE Transactions on Information Forensics and Security, 7(2), 465-479.
|