跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊易軒
研究生(外文):CHUANG, YI-HSUAN
論文名稱:研製以黑磷烯修飾二氧化鈦光電極與銀修飾鉑對電極於低照度之染料敏化太陽能電池
論文名稱(外文):Fabrication of Phosphorene Modified Titanium Dioxide Photoelectrode and Silver Modified Platinum Counter Electrode for Dye-sensitized Solar Cells under Low Illumination
指導教授:賴志賢
指導教授(外文):LAI, CHIH-HSIEN
口試委員:周榮泉廖義宏
口試委員(外文):CHOU, JUNG-CHUANLIAO, YI-HUNG
口試日期:2018-07-16
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:118
中文關鍵詞:染料敏化太陽能電池二氧化鈦黑磷烯低照度
外文關鍵詞:Dye-sensitized Solar CellTitanium DioxidePhosphorenePlatinumSilverLow Illumination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以黑磷烯(Phosphorene)摻入二氧化鈦(Titanium dioxide, TiO2)膠體中,並通過刮刀法沉積於氟摻雜氧化錫(Fluorine-doped tin oxide, FTO)導電玻璃作為染料敏化太陽能電池之光電極。其原因為黑磷烯擁有高電子遷移率與高光吸收率之特性,可以增強二氧化鈦薄膜電子傳輸與增加逆向復合阻抗,藉此可進一步達到提升電流密度之目的。本研究藉由掃描電子顯微鏡分析黑磷烯之表面結構;以紫外光-可見光吸收光譜儀量測薄膜之光吸收率;以電化學阻抗分析儀量測染料敏化太陽能電池之內部阻抗。相較於純二氧化鈦光電極之染料敏化太陽能電池,其光伏轉換效率為3.50%,添加適量黑磷烯於二氧化鈦光電極之染料敏化太陽能電池,最佳光伏轉換效率達4.35%,光伏轉換效率增加24%。
此外,本研究以射頻濺鍍系統沉積銀修飾鉑對電極以提升染料與電解液之間的氧化還原反應,其原因為銀具有高導電率,根據晶格應變效應使薄膜造成拉伸應變,使薄膜提升吸附能力。本研究以銀之不同厚度探討其銀鉑對電極之導電率及催化效率。藉由掃描電子顯微鏡分析鉑與銀之表面結構;以四點探針量測系統量測鉑銀對電極之片電阻;以電化學阻抗分析儀量測染料敏化太陽能電池之內部阻抗。相較於純鉑對電極,鉑銀對電極可以提供更高的導電率和更佳的催化活性。染料敏化太陽能電池之光伏轉換效率從鉑對電極之3.82%提升至鉑銀對電極之4.46%,光伏轉換效率增加16%。最後,將黑磷烯修飾二氧化鈦光電極與銀修飾鉑對電極之最佳複合薄膜染料敏化太陽能電池於低照度下進行探討,於1.75 mW/cm2照度下之光伏轉換效率為7.21%,相較於100 mW/cm2照度下之4.76%,光伏轉換效率增加52%。

In this study, phosphorene was mixed with titanium dioxide (TiO2) colloid and deposited on fluorine-doped tin oxide (FTO) conductive substrate by doctor blade method as the photoelectrode of dye-sensitized solar cell (DSSC). The reason is because phosphorene has high electron mobility and high absorption, which could enhance the electron transfer ability and increase the recombination resistance, thus improve the current density. The surface morphology of phosphorene film was characterized by field-emission scanning electronic microscopy (FE-SEM). The optical absorption of phosphorene-TiO2 composited film was measured by UV–visible spectrometer. The interface resistance of DSSC was measured by electrochemical impedance spectroscopy. Compared with the photovoltaic conversion efficiency of 3.50% based on pure TiO2 photoelectrode, it is found that the optimal photovoltaic conversion efficiency of 4.35% is achieved when the phosphorene is introduced to TiO2 photoelectrode, and the efficiency increases by 24%.
More than that, silver (Ag) was deposited by radio frequency sputtering to modify the conventional platinum (Pt) counter electrode to enhance the redox reaction between electrolyte and dye molecule. The reason is because Ag has the highest electrical conductivity in metal, and the lattice strain effect will increase the surface absorption ability of film. The silver modified Pt counter electrode with different Ag thicknesses was investigated for electrical conductivity and catalytic activity. The surface morphology of Pt/Ag counter electrode was characterized by FE-SEM. The sheet resistance of Pt/Ag counter electrode was measured by 4-point probing system. The interface resistance of DSSC was measured by electrochemical impedance spectroscopy. Compared with the pure Pt counter electrode, the silver modified Pt counter electrode can provide a higher electrical conductivity and a superior catalytic activity. Moreover, the photovoltaic conversion efficiency of DSSC can be enhanced from 3.82% with the Pt counter electrode to 4.46% with the Pt/Ag counter electrode, and the efficiency increases by 16%. Finally, the DSSC of optimal composited films with phosphorene-TiO2 photoelectrode and Pt/Ag counter electrode was investigated under low illumination. The photovoltaic conversion efficiency of the DSSC can be enhanced from 4.76% under illumination of 100 mW/cm2 to 7.21% under illumination of 1.75 mW/cm2 and the efficiency increases by 52%.

摘要 i
ABSTRACT ii
誌謝 iv
Table of contents v
List of Tables viii
List of Figures ix
Chapter 1 Background and Motivation 1
1.1 Background 1
1.1.1 Advances in Energy Technologies 1
1.1.2 Types of Solar Cell 1
1.1.3 Dye-sensitized Solar Cell 4
Chapter 2 Literature Survey 7
2.1 Structure of Dye-sensitized Solar Cell 7
2.1.1 Transparent Conductive Oxide 8
2.1.2 Compact Layer 9
2.1.3 Photoelectrode 9
2.1.4 Dye 13
2.1.5 Electrolyte 15
2.1.6 Counter Electrode 15
2.2 Principle of Dye-sensitized Solar Cell 17
2.3 Photovoltaic Properties of Dye sensitized Solar Cell 19
2.3.1 Short-circuit Current Density (JSC) 19
2.3.2 Open-circuit Voltage (VOC) 19
2.3.3 Fill Factor (F. F.) 19
2.3.4 Photovoltaic Conversion Efficiency (η) 21
2.4 Efficiency Improvement of Dye-sensitized Solar Cell 22
2.4.1 Improvement of Photoelectrode 22
2.4.2 Improvement of Counter Electrode 24
Chapter 3 Experimental 26
3.1 Materials 26
3.2 Fabrication Procedure of Dye-sensitized Solar Cell 28
3.2.1 Preparation of Transparent Conductive Oxide Substrate 28
3.2.2 Fabrication of Compact Layer 28
3.2.3 Fabrication of Phosphorene-TiO2 Photoelectrode 28
3.2.4 Fabrication of Platinum/Silver Counter Electrode 30
3.2.5 Fabrication of N3 Dye 30
3.2.6 Fabrication of Electrolyte 30
3.2.7 Fabrication of Dye-sensitized Solar Cell 31
3.3 Measurement Systems 33
3.3.1 Field-Emission Scanning Electron Microscope (FE-SEM) 33
3.3.2 Atomic Force Microscope (AFM) 35
3.3.3 Radio Frequency Sputtering System 37
3.3.4 Solar Simulator Measurement System 39
3.3.5 4-Point Probing System 41
3.3.6 Alpha-Step (α-Step) Surface Profilometer 43
3.3.7 Electrochemical Impedance Spectroscopy (EIS) 45
3.3.8 Cyclic Voltammetry (CV) 47
3.3.9 Ultraviolet-Visible Spectroscopy (UV-vis) 49
Chapter 4 Results and Discussion 51
4.1 Analysis of Photoelectrodes 51
4.1.1 Raman Characteristics of Phosphorene 51
4.1.2 Characterization of Phosphorene-TiO2 Composited Film and TiO2 Film 53
4.1.3 Optical Properties of Phosphorene-TiO2 Composited Films 57
4.1.4 Dye Adsorption of Phosphorene-TiO2 Composited Films 61
4.1.5 Electrochemical Impedance Characteristics of Phosphorene-TiO2 Composited Films 63
4.1.6 Photovoltaic Characteristics of Dye-Sensitized Solar Cell with Phosphorene-TiO2 Composited Films 65
4.2 Analysis of Counter Electrodes 67
4.2.1 Characterization of Platinum Film and Silver Film 67
4.2.2 The AFM Measurement of Counter Electrodes 69
4.2.3 Effects of Platinum/Silver Film Thicknesses on Sheet Resistance of Counter Electrodes 73
4.2.4 Catalytic Properties of Platinum/Silver Counter Electrodes 75
4.2.5 Electrochemical Impedance Characteristics of Different Platinum/Silver Counter Electrodes 78
4.2.6 Photovoltaic Characteristics of Different Platinum/Silver Counter Electrodes for Different Silver Sputtering Time 80
4.2.7 Comparison between the 200-nm-thick Pt CE and the Pt/Ag (2min) CE 82
4.3 Fabrication of Dye-sensitized Solar Cell under Low Illumination 84
4.3.1 Effect of Photovoltaic Characteristics under Different Illumination 84
Chapter 5 Conclusion 86
Chapter 6 Future Works 88
References 89
Appendices口試委員之問題與建議 99


[1]M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol., C: Photochem. Rev., vol. 4, pp. 145−153, Oct. 2003.
[2]National renewable energy laboratory (NREL). Best research-cell efficiencies, from https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[3]A. Hussain, S. M. Arif, and M. Aslam, “Emerging renewable and sustainable energy technologies: State of the art,” Renew. Sust. Energ. Rev., vol. 71, pp. 12−28, May 2017.
[4]A. A. Shah, A. A. Umar, and M. M. Salleh, “Efficient quantum capacitance enhancement in DSSC by gold nanoparticles plasmonic effect,” Electrochim. Acta, vol. 195, pp. 134−142, Mar. 2016.
[5]I. Y. Bu and T. H. Hu, “The role of various carbon nanomaterials for dye-sensitized solar cells applications,” Sol. Energy, vol. 130, pp. 81−88, Jun. 2016.
[6]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, vol. 261, pp. 402−403, Jun. 1976.
[7]B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737−740, Oct. 1991.
[8]M. khannam, R. Boruah, and S. K. Dolui, “An efficient quasi-solid state dye sensitized solar cells based on graphene oxide/gelatin gel electrolyte with NiO supported TiO2 photoanode,” J. Photochem. Photobiol., A, vol. 335, pp. 248−258, Feb. 2017.
[9]M. K. Nazeeruddin, P. Péchy, and M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex,” Chem. Commun., vol. 8, pp. 1705−1706, Oct. 1997.
[10]M. K. Nazeeruddin, S. M. Zakeeruddin, R. H. Baker, M. Jirousek, P. Liska, and N. Vlachopoulos, “Acid-base equilibria of (2,2¢-Bipyridyl-4,4¢-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,” Inorg. Chem., vol. 38, pp. 6298−6305, Nov. 1999.
[11]H. Yuan, W. Wang, D. Xu, Q. Xu, J. Xie, X. Chen, T. Zhang, C. Xiong, Y. He, Y. Zhang, Y. Liu and H. Shen, “Outdoor testing and ageing of dye-sensitized solar cells for building integrated photovoltaics,” Sol. Energy, vol. 165, pp. 233−239, Nov. 2018.
[12]M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, and C. Lin, “Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes,” Mater. Today, vol. 18, pp. 155−162, Apr. 2015.
[13]Hegazy, N. Kinadjian, B. Sadeghimakki, S. Sivoththaman, M. Allam, and E. Prouzet, “TiO2 nanoparticles optimized for photoanodes tested in large area dye-sensitized solar cells (DSSC),” Sol. Energy Mater. Sol. Cells, vol. 153, pp. 108−116, Aug. 2016.
[14]T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, and N. Tanabe, “FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells,” J. Photochem. Photobiol., A, vol. 164, pp. 199−202, Jun. 2004.
[15]F. I. Chowdhury, T. Blaine, and A. B. Gougam, “Optical transmission enhancement of fluorine doped tin oxide (FTO) on glass for thin film photovoltaic applications,” Energy Procedia, vol. 42, pp. 660−669, Nov. 2013.
[16]H. T. Chou, K. M. Lin and H. C. Hsu, “Fabrication of TiO2 compact layer precursor at various reaction times for dye sensitized solar cells,” Microelectron. Reliab., vol. 55, pp. 2208−2212, Nov. 2015.
[17]L. C. Chen, C. Cheng, and B. S. Tseng, “Improvement of short-circuit current density in dye-sensitized solar cells using sputtered nanocolumnar TiO2 compact layer,” J. Nanomater., vol. 2010, pp. 1−4, Aug. 2010.
[18]D. Y. Chen, J. Y. Kao, C. Y. Hsu, and C. H. Tsai, “The effect of AZO and compact TiO2 films on the performance of dye-sensitized solar cells,” J. Electroanal. Chem., vol. 766, pp. 1−7, Apr. 2016.
[19]H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, and D. R. Jung, “The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell,” Current Appl. Phys., vol. 12, pp. 737−741, Aug. 2012.
[20]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev., vol. 110, pp. 6595−6663, Nov. 2010.
[21]Q. P. Luo, B. Wang, and Y. Cao, “Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells,” J. Alloys Compd., vol. 695, pp. 3324−3330, Feb. 2017.
[22]Y. Wang, Q. Luo, Y. Ding, X. Wang, X. Li, and D. Li, “Hydrothermal preparation of hierarchical SnO2 microsphere for efficient dye-sensitized solar cells,” Mater. Chem. Phys., vol. 207, pp. 141−146, Mar. 2018.
[23]A. F. Kanta, M. Poelman, and A. Decroly, “Electrochemical characterisation of TiO2 nanotube array photoanodes for dye-sensitized solar cell application,” Sol. Energy Mater. Sol. Cells, vol. 133, pp. 76−81, Feb. 2015.
[24]S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, and T. Sakata, “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells,” J. Phys. Chem. B, vol. 106, pp. 10004−10010, Sep. 2002.
[25]N. G. Park, J. Lagemaat, and A. J. Frank, “Comparision of dye-sensitized rutile and anatase based TiO2 solar cells,” J. Phys. Chem. B, vol. 104, pp. 8989−8994, Sep. 2000.
[26]S. Pan, J. He, C. Wang, and Y. Zuo, “Exfoliation of two-dimensional phosphorene sheets with enhanced photocatalytic activity under simulated sunlight,” J. Mater. Lett., Vol. 212, pp. 311−314, Feb. 2018.
[27]L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, “Black phosphorus field-effect transistors,” Nature, vol. 9, pp. 372−377, Oct. 2014.
[28]H. U. Lee, X. C. Lee, J. Won, B. C. Son, S. Choi, Y. Kim, S. Y. Park, H. S. Kim, Y. C. Lee, and J. Lee, “Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts,” Sci. Rep, vol. 5, Mar. 2015.
[29]J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. K. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett, vol. 14, pp. 6964−6970, Nov. 2014.
[30]T. Ma, K. Inoue, H. Noma, K. Yao, and E. Abe, “Ionization potential studies of organic dye absorbed onto TiO2 electrode,” J. Mater. Sci. Lett., vol. 21, pp. 1013−1014, Jul. 2002.
[31]S. V. Umale, S. N. Tambat, V. Sudhakar, S. M. Sontakke and K. Krishnamoorthy, “Fabrication, characterization and comparison of DSSC using anatase TiO2 synthesized by various methods,” Adv. Powder Technol., vol. 28, pp. 2859−2864, Nov. 2017.
[32]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye sensitized solar cells,” Chem. Rev., vol.110, pp. 6595−6663, Sep. 2010.
[33]B. Yoo, K. Kim, D. K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N. G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem., vol. 20, pp. 4392−4398, May 2010.
[34]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. of Appl. Phys., vol. 45, pp. 638−640, Jun. 2006.
[35]Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, and M. Zhang, “High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states,” ACS nano, vol. 4, pp. 6032−6038, Oct. 2010.
[36]H. T. Chou, C. H. Lien, H. C. Hsu, S. T. Chen, and S. C. FanJiang, “Characteristics and analyses of various counter-electrodes applied in quasi-solid electrolyte dye-sensitized solar cells,” IEEE J. Photovolt., vol. 8, pp. 137−143, Jan. 2018.
[37]S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, vol. 101, pp. 2576−2582, Apr. 1997.
[38]G. Syrrokostas, A. Siokou, G. Leftheriotis, and P. Yianoulis, “Degradation mechanisms of Pt counter electrodes for dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 103, pp. 119−127, Aug. 2012.
[39]X. Chen, Q. Tang, B. He, L. Lin, and L. Yu, “Platinum-free binary Co-Ni alloy counter electrodes for efficient dye-sensitized solar cells,” Angew. Chem., vol. 53, pp. 10799−10803, Sep. 2014.
[40]Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells,” Electrochem. Commun., vol. 9, pp. 596−598, Apr. 2007.
[41]V. Loryuenyong, S. Yaotrakool, P. Prathumted, J. Lertsiri, and A. Buasri, “Synergistic effects of graphene–polyaniline counter electrode in dye-sensitised solar cells,” IEEE J. Photovolt., vol. 11, pp. 77−80, Feb. 2016.
[42]J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, and Q. Meng, “A flexible carbon counter electrode for dye-sensitized solar cells,” Carbon, vol. 47, pp. 2704−2708, Sep. 2009.
[43]W. Hong, Y. Xu, G. Lu,C. Li, and G. Shi, “Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells,” Electrochem. Commun., vol. 10, pp. 1555−1558, Oct. 2008.
[44]P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey, and Q. Qiao, “Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode,” Energy & Environ. Sci., vol. 4, pp. 426−429, Feb. 2009.
[45]V. D. Dao, I. K. Jin and H. S. Choi, “Design of PtRu alloy/reduced graphene oxide nanohybrid counter electrodes for highly efficient dye-sensitized solar cells,” Electrochim. Acta, vol. 201, pp. 1−7, Mar. 2016.
[46]O. Omelianovych, V. D. Dao, L. L. Larina, and H. S. Choi, “Optimization of the PtFe alloy structure for application as an efficient counter electrode for dye-sensitized solar cells,” Electrochim. Acta, vol. 21, pp. 842−850, Jun. 2016.
[47]J. Wan, G. Fang, H. Yin, X. Liu, M. Zhao, W. Ke, H. Tao, and Z. Tang, “Pt–Ni alloy nanoparticles as superior counter electrodes for dye-sensitized solar cells: Experimental and theoretical understanding,” J. Adv. Mater., vol. 26, pp. 8101−8106, Dec. 2014.
[48]M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem., vol. 44, pp. 6841−6851, Sep. 2005.
[49]L. Andrade, J. Sousa, H. Aguilar Ribeiro, and A. Mendes, “Phenomenological modeling of dye-sensitized solar cells under transient conditions,” Sol. Energy, vol. 85, pp. 781−793, May 2011.
[50]D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, and I. Riess, “Nature of photovoltaic action in dye-sensitized solar cells,” J. Phys. Chem. B, vol. 104, pp. 2053−2059, Feb. 2000.
[51]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev., vol. 110, pp. 6595−6663, Sep. 2010.
[52]H. Wang, S. L. Leonard, and Y. H. Hu, “Promoting effect of graphene on dye-sensitized solar cells,” Amer. Chem. Soc. Ind. Eng. Chem. Res., vol. 51, pp. 10613–10620, Jul. 2012.
[53]X. Luan, L. Chen, J. Zhang, G. Qu, J. C. Flake, and Y. Wang, “Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells,” Electrochim. Acta, vol. 111, pp. 216–222, Nov. 2013.
[54]Y. Zhao, Y. Chen, Y. H. Zhang, and S. F. Liu, “Recent advance in black phosphorus: Properties and applications,” Mater. Chem. Phys., vol. 189, pp. 215–229, Mar. 2017.
[55]Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu, and P. K. Chu, “From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater, vol. 25, pp. 6996–7002, Dec. 2015.
[56]S. A. Wasileski, M. T. M. Koper, and M. J. Weaver, “Field-dependent chemisorption of carbon monoxide on platinum-group (111) surfaces:  Relationships between binding energetics, geometries, and vibrational properties as assessed by density functional theory,” J. Phys. Chem., vol. 105, pp. 3518−3530, Apr. 2001.
[57]S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, “Surface composition and catalytic evolution of AuxPd1-x (x = 0.25, 0.50 and 0.75) nanoparticles under CO/O2 reaction in torr pressure regime and at 200°C,” Catal. Lett., vol. 141, pp. 633−640, Dec. 2014.
[58]A. Schlapka, M. Lischka, A. Gross, U. Kasberger, and P. Jakob, “Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru (0001),” Phys. Rev. Lett., vol. 91, Jun. 2003.
[59]A. HaiAlami, B. Rajab, and K. Aokal, “Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell application,” Sol. Energy, vol. 139, pp. 1231−1236, Nov. 2017.
[60]S. Ghasemi, S. Hosseini, and F. Mousavi, “Electrophoretic deposition of graphene nanosheets: A suitablemethod for fabrication of silver-graphene counter electrode fordye-sensitized solar cell,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 520, pp. 477−487, May 2017.
[61]P. Haas, F. Tran, and P. blaha, “Calculation of the lattice constant of solids with semilocal functionals,” Phys. Rev. B, vol. 79, Feb. 2009.
[62]Virtual classroom biology, “Information on the FESEM (Field-emission Scanning Electron Microscope),” Radboud universiteit nijmegen.
[63]B. Cappella and G. Dietler, “Force-distance curves by atomic force microscopy,” Surf. Sci. Rep., vol. 34, pp. 1–104, Jul. 1999.
[64]U. Mehmood, S. Ahmed, I. A. Hussein, and K. Harrabi, “Improving the efficiency of dye sensitized solar cells by TiO2-graphene nanocomposite photoanode,” Photonics Nanostruct. Fundam. Appl., vol. 16, pp. 34−42, Aug. 2015.
[65]P. T. Kissinger and W. R. Heineman, “Cyclic voltammetry,” J. Chem. Educ., vol. 60, pp. 702−706, Sep. 1983.
[66]A. L. Eckermann, D. J. Feld, J. A. Shaw, and T. J. Meade, “Electrochemistry of redox-active self-assembled monolayers,” Coord. Chem. Rev., vol. 254, pp. 1769−1802, Aug. 2010.
[67]C. Zhao, Y. Shi, Z. Zhong, and T. Ma, “Screen-printed Pt counter electrodes exhibiting high catalytic,” J. Catal., vol. 35, pp. 219−226, Feb. 2014.
[68]F. Dal Moro, “Bionanocomposite membranes based on cellulose nanofibrils: Effects of graphene oxide and calcium ions,” Apr. 2014.
[69]A. Afifi and M. K. Tabatabaei, “Efficiency investigation of dye-sensitized solar cells based on the zinc oxide nanowires,” Orient. J. Chem., vol. 30, pp. 155–160, Feb. 2014.
[70]N. S. Das, P. K. Ghosh, M. K. Mitra, and K. K. Chattopadhyay, “Effect of film thickness on the energy band gap of nanocrystalline CdS thin films analyzed by spectroscopic ellipsometry,” Phys. E Low-Dimensional Syst. Nanostruct., vol. 42, pp. 2097–2102, Jun. 2010.
[71]N. Ghobadi, “Band gap determination using absorption spectrum fitting procedure,” Int Nano Lett., vol. 7, pp. 1−4, Dec. 2013.
[72]K. J. Jiang, J. B. Xia, N. Masaki, S. Noda, and S. Yanagida, “Efficient sensitization of nanocrystalline TiO2 films with high molar extinction coefficient ruthenium complex,” Inorg. Chim. Acta, vol. 361, pp. 783−785, Feb. 2008.
[73]U. Mehmood, “Efficient and economical dye-sensitized solar cells based on graphene/TiO2 nanocomposite as a photoanode and graphene as a Pt-free catalyst for counter electrode,” Org. Electron., vol. 42, pp. 187−193, Mar. 2017.
[74]S. Z. Siddick, C. W. Lai, and J. C. Juan, “An investigation of the dye-sensitized solar cell performance using graphene-titania (TrGO) photoanode with conventional dye and natural green chlorophyll dye,” Mater. Sci. Semicond. Process., vol. 74, pp. 267−276, Feb. 2018.
[75]D. Lee, “Thermophysical properties of interfacial layer in nanofluids,” Langmuir, pp. 6011–6018, Apr. 2007.
[76]P. Haas, F. Tran, and P. blaha, “Calculation of the lattice constant of solids with semilocal functionals,” Phys. Rev. B, vol. 79, Feb. 2009.
[77]D. A. Stevens and J. R. Dahn, “Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells,” J. Electrochem. Soc., vol. 150, pp. 770−775, Jun. 2003.
[78]X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,” J. Electroanal. Chem., vol. 570, pp. 257−263, Sep. 2004.
[79]K. J. Lee, H. Seo, M. K. Son, M. Kim, J. T. Hong, and H. J. Kim, “Effect of the sputtering thickness and angle of Pt film on a counter electrode on the efficiency of a dye-sensitized solar cell,” Photovoltaic Specialists Conference, May 2008.
[80]P. Zhai, H. Lee, Y. T. Huang, T. H. Wei, and S. P. Feng, “Study on the blocking effect of a quantum-dot TiO2 compact layer in dye-sensitized solar cells with ionic liquid electrolye under low-intensity illumination,” J. Power Sources, vol. 329, pp. 502−509, Sep. 2016.
[81]J. L. Lan, T. C. Wei, S. P. Feng, C. C. Wan, and G. Cao, “Effect of iodine content in the electrolye on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities,” J. Phys. Chem., vol. 116, pp. 25727−25733, Nov. 2012.
[82]P. Salvador, M. G. Hidalgo, A. Zaban, and J. Bisquert, “Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells,” J. Phys. Chem. B, vol. 109, pp. 15915−15926, Jul. 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊