|
[1]M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol., C: Photochem. Rev., vol. 4, pp. 145−153, Oct. 2003. [2]National renewable energy laboratory (NREL). Best research-cell efficiencies, from https://www.nrel.gov/pv/assets/images/efficiency-chart.png [3]A. Hussain, S. M. Arif, and M. Aslam, “Emerging renewable and sustainable energy technologies: State of the art,” Renew. Sust. Energ. Rev., vol. 71, pp. 12−28, May 2017. [4]A. A. Shah, A. A. Umar, and M. M. Salleh, “Efficient quantum capacitance enhancement in DSSC by gold nanoparticles plasmonic effect,” Electrochim. Acta, vol. 195, pp. 134−142, Mar. 2016. [5]I. Y. Bu and T. H. Hu, “The role of various carbon nanomaterials for dye-sensitized solar cells applications,” Sol. Energy, vol. 130, pp. 81−88, Jun. 2016. [6]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, vol. 261, pp. 402−403, Jun. 1976. [7]B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737−740, Oct. 1991. [8]M. khannam, R. Boruah, and S. K. Dolui, “An efficient quasi-solid state dye sensitized solar cells based on graphene oxide/gelatin gel electrolyte with NiO supported TiO2 photoanode,” J. Photochem. Photobiol., A, vol. 335, pp. 248−258, Feb. 2017. [9]M. K. Nazeeruddin, P. Péchy, and M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex,” Chem. Commun., vol. 8, pp. 1705−1706, Oct. 1997. [10]M. K. Nazeeruddin, S. M. Zakeeruddin, R. H. Baker, M. Jirousek, P. Liska, and N. Vlachopoulos, “Acid-base equilibria of (2,2¢-Bipyridyl-4,4¢-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,” Inorg. Chem., vol. 38, pp. 6298−6305, Nov. 1999. [11]H. Yuan, W. Wang, D. Xu, Q. Xu, J. Xie, X. Chen, T. Zhang, C. Xiong, Y. He, Y. Zhang, Y. Liu and H. Shen, “Outdoor testing and ageing of dye-sensitized solar cells for building integrated photovoltaics,” Sol. Energy, vol. 165, pp. 233−239, Nov. 2018. [12]M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, and C. Lin, “Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes,” Mater. Today, vol. 18, pp. 155−162, Apr. 2015. [13]Hegazy, N. Kinadjian, B. Sadeghimakki, S. Sivoththaman, M. Allam, and E. Prouzet, “TiO2 nanoparticles optimized for photoanodes tested in large area dye-sensitized solar cells (DSSC),” Sol. Energy Mater. Sol. Cells, vol. 153, pp. 108−116, Aug. 2016. [14]T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, and N. Tanabe, “FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells,” J. Photochem. Photobiol., A, vol. 164, pp. 199−202, Jun. 2004. [15]F. I. Chowdhury, T. Blaine, and A. B. Gougam, “Optical transmission enhancement of fluorine doped tin oxide (FTO) on glass for thin film photovoltaic applications,” Energy Procedia, vol. 42, pp. 660−669, Nov. 2013. [16]H. T. Chou, K. M. Lin and H. C. Hsu, “Fabrication of TiO2 compact layer precursor at various reaction times for dye sensitized solar cells,” Microelectron. Reliab., vol. 55, pp. 2208−2212, Nov. 2015. [17]L. C. Chen, C. Cheng, and B. S. Tseng, “Improvement of short-circuit current density in dye-sensitized solar cells using sputtered nanocolumnar TiO2 compact layer,” J. Nanomater., vol. 2010, pp. 1−4, Aug. 2010. [18]D. Y. Chen, J. Y. Kao, C. Y. Hsu, and C. H. Tsai, “The effect of AZO and compact TiO2 films on the performance of dye-sensitized solar cells,” J. Electroanal. Chem., vol. 766, pp. 1−7, Apr. 2016. [19]H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, and D. R. Jung, “The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell,” Current Appl. Phys., vol. 12, pp. 737−741, Aug. 2012. [20]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev., vol. 110, pp. 6595−6663, Nov. 2010. [21]Q. P. Luo, B. Wang, and Y. Cao, “Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells,” J. Alloys Compd., vol. 695, pp. 3324−3330, Feb. 2017. [22]Y. Wang, Q. Luo, Y. Ding, X. Wang, X. Li, and D. Li, “Hydrothermal preparation of hierarchical SnO2 microsphere for efficient dye-sensitized solar cells,” Mater. Chem. Phys., vol. 207, pp. 141−146, Mar. 2018. [23]A. F. Kanta, M. Poelman, and A. Decroly, “Electrochemical characterisation of TiO2 nanotube array photoanodes for dye-sensitized solar cell application,” Sol. Energy Mater. Sol. Cells, vol. 133, pp. 76−81, Feb. 2015. [24]S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, and T. Sakata, “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells,” J. Phys. Chem. B, vol. 106, pp. 10004−10010, Sep. 2002. [25]N. G. Park, J. Lagemaat, and A. J. Frank, “Comparision of dye-sensitized rutile and anatase based TiO2 solar cells,” J. Phys. Chem. B, vol. 104, pp. 8989−8994, Sep. 2000. [26]S. Pan, J. He, C. Wang, and Y. Zuo, “Exfoliation of two-dimensional phosphorene sheets with enhanced photocatalytic activity under simulated sunlight,” J. Mater. Lett., Vol. 212, pp. 311−314, Feb. 2018. [27]L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, “Black phosphorus field-effect transistors,” Nature, vol. 9, pp. 372−377, Oct. 2014. [28]H. U. Lee, X. C. Lee, J. Won, B. C. Son, S. Choi, Y. Kim, S. Y. Park, H. S. Kim, Y. C. Lee, and J. Lee, “Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts,” Sci. Rep, vol. 5, Mar. 2015. [29]J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. K. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett, vol. 14, pp. 6964−6970, Nov. 2014. [30]T. Ma, K. Inoue, H. Noma, K. Yao, and E. Abe, “Ionization potential studies of organic dye absorbed onto TiO2 electrode,” J. Mater. Sci. Lett., vol. 21, pp. 1013−1014, Jul. 2002. [31]S. V. Umale, S. N. Tambat, V. Sudhakar, S. M. Sontakke and K. Krishnamoorthy, “Fabrication, characterization and comparison of DSSC using anatase TiO2 synthesized by various methods,” Adv. Powder Technol., vol. 28, pp. 2859−2864, Nov. 2017. [32]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye sensitized solar cells,” Chem. Rev., vol.110, pp. 6595−6663, Sep. 2010. [33]B. Yoo, K. Kim, D. K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N. G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem., vol. 20, pp. 4392−4398, May 2010. [34]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. of Appl. Phys., vol. 45, pp. 638−640, Jun. 2006. [35]Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, and M. Zhang, “High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states,” ACS nano, vol. 4, pp. 6032−6038, Oct. 2010. [36]H. T. Chou, C. H. Lien, H. C. Hsu, S. T. Chen, and S. C. FanJiang, “Characteristics and analyses of various counter-electrodes applied in quasi-solid electrolyte dye-sensitized solar cells,” IEEE J. Photovolt., vol. 8, pp. 137−143, Jan. 2018. [37]S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, vol. 101, pp. 2576−2582, Apr. 1997. [38]G. Syrrokostas, A. Siokou, G. Leftheriotis, and P. Yianoulis, “Degradation mechanisms of Pt counter electrodes for dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 103, pp. 119−127, Aug. 2012. [39]X. Chen, Q. Tang, B. He, L. Lin, and L. Yu, “Platinum-free binary Co-Ni alloy counter electrodes for efficient dye-sensitized solar cells,” Angew. Chem., vol. 53, pp. 10799−10803, Sep. 2014. [40]Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells,” Electrochem. Commun., vol. 9, pp. 596−598, Apr. 2007. [41]V. Loryuenyong, S. Yaotrakool, P. Prathumted, J. Lertsiri, and A. Buasri, “Synergistic effects of graphene–polyaniline counter electrode in dye-sensitised solar cells,” IEEE J. Photovolt., vol. 11, pp. 77−80, Feb. 2016. [42]J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, and Q. Meng, “A flexible carbon counter electrode for dye-sensitized solar cells,” Carbon, vol. 47, pp. 2704−2708, Sep. 2009. [43]W. Hong, Y. Xu, G. Lu,C. Li, and G. Shi, “Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells,” Electrochem. Commun., vol. 10, pp. 1555−1558, Oct. 2008. [44]P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey, and Q. Qiao, “Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode,” Energy & Environ. Sci., vol. 4, pp. 426−429, Feb. 2009. [45]V. D. Dao, I. K. Jin and H. S. Choi, “Design of PtRu alloy/reduced graphene oxide nanohybrid counter electrodes for highly efficient dye-sensitized solar cells,” Electrochim. Acta, vol. 201, pp. 1−7, Mar. 2016. [46]O. Omelianovych, V. D. Dao, L. L. Larina, and H. S. Choi, “Optimization of the PtFe alloy structure for application as an efficient counter electrode for dye-sensitized solar cells,” Electrochim. Acta, vol. 21, pp. 842−850, Jun. 2016. [47]J. Wan, G. Fang, H. Yin, X. Liu, M. Zhao, W. Ke, H. Tao, and Z. Tang, “Pt–Ni alloy nanoparticles as superior counter electrodes for dye-sensitized solar cells: Experimental and theoretical understanding,” J. Adv. Mater., vol. 26, pp. 8101−8106, Dec. 2014. [48]M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem., vol. 44, pp. 6841−6851, Sep. 2005. [49]L. Andrade, J. Sousa, H. Aguilar Ribeiro, and A. Mendes, “Phenomenological modeling of dye-sensitized solar cells under transient conditions,” Sol. Energy, vol. 85, pp. 781−793, May 2011. [50]D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, and I. Riess, “Nature of photovoltaic action in dye-sensitized solar cells,” J. Phys. Chem. B, vol. 104, pp. 2053−2059, Feb. 2000. [51]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev., vol. 110, pp. 6595−6663, Sep. 2010. [52]H. Wang, S. L. Leonard, and Y. H. Hu, “Promoting effect of graphene on dye-sensitized solar cells,” Amer. Chem. Soc. Ind. Eng. Chem. Res., vol. 51, pp. 10613–10620, Jul. 2012. [53]X. Luan, L. Chen, J. Zhang, G. Qu, J. C. Flake, and Y. Wang, “Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells,” Electrochim. Acta, vol. 111, pp. 216–222, Nov. 2013. [54]Y. Zhao, Y. Chen, Y. H. Zhang, and S. F. Liu, “Recent advance in black phosphorus: Properties and applications,” Mater. Chem. Phys., vol. 189, pp. 215–229, Mar. 2017. [55]Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu, and P. K. Chu, “From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater, vol. 25, pp. 6996–7002, Dec. 2015. [56]S. A. Wasileski, M. T. M. Koper, and M. J. Weaver, “Field-dependent chemisorption of carbon monoxide on platinum-group (111) surfaces: Relationships between binding energetics, geometries, and vibrational properties as assessed by density functional theory,” J. Phys. Chem., vol. 105, pp. 3518−3530, Apr. 2001. [57]S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, “Surface composition and catalytic evolution of AuxPd1-x (x = 0.25, 0.50 and 0.75) nanoparticles under CO/O2 reaction in torr pressure regime and at 200°C,” Catal. Lett., vol. 141, pp. 633−640, Dec. 2014. [58]A. Schlapka, M. Lischka, A. Gross, U. Kasberger, and P. Jakob, “Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru (0001),” Phys. Rev. Lett., vol. 91, Jun. 2003. [59]A. HaiAlami, B. Rajab, and K. Aokal, “Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell application,” Sol. Energy, vol. 139, pp. 1231−1236, Nov. 2017. [60]S. Ghasemi, S. Hosseini, and F. Mousavi, “Electrophoretic deposition of graphene nanosheets: A suitablemethod for fabrication of silver-graphene counter electrode fordye-sensitized solar cell,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 520, pp. 477−487, May 2017. [61]P. Haas, F. Tran, and P. blaha, “Calculation of the lattice constant of solids with semilocal functionals,” Phys. Rev. B, vol. 79, Feb. 2009. [62]Virtual classroom biology, “Information on the FESEM (Field-emission Scanning Electron Microscope),” Radboud universiteit nijmegen. [63]B. Cappella and G. Dietler, “Force-distance curves by atomic force microscopy,” Surf. Sci. Rep., vol. 34, pp. 1–104, Jul. 1999. [64]U. Mehmood, S. Ahmed, I. A. Hussein, and K. Harrabi, “Improving the efficiency of dye sensitized solar cells by TiO2-graphene nanocomposite photoanode,” Photonics Nanostruct. Fundam. Appl., vol. 16, pp. 34−42, Aug. 2015. [65]P. T. Kissinger and W. R. Heineman, “Cyclic voltammetry,” J. Chem. Educ., vol. 60, pp. 702−706, Sep. 1983. [66]A. L. Eckermann, D. J. Feld, J. A. Shaw, and T. J. Meade, “Electrochemistry of redox-active self-assembled monolayers,” Coord. Chem. Rev., vol. 254, pp. 1769−1802, Aug. 2010. [67]C. Zhao, Y. Shi, Z. Zhong, and T. Ma, “Screen-printed Pt counter electrodes exhibiting high catalytic,” J. Catal., vol. 35, pp. 219−226, Feb. 2014. [68]F. Dal Moro, “Bionanocomposite membranes based on cellulose nanofibrils: Effects of graphene oxide and calcium ions,” Apr. 2014. [69]A. Afifi and M. K. Tabatabaei, “Efficiency investigation of dye-sensitized solar cells based on the zinc oxide nanowires,” Orient. J. Chem., vol. 30, pp. 155–160, Feb. 2014. [70]N. S. Das, P. K. Ghosh, M. K. Mitra, and K. K. Chattopadhyay, “Effect of film thickness on the energy band gap of nanocrystalline CdS thin films analyzed by spectroscopic ellipsometry,” Phys. E Low-Dimensional Syst. Nanostruct., vol. 42, pp. 2097–2102, Jun. 2010. [71]N. Ghobadi, “Band gap determination using absorption spectrum fitting procedure,” Int Nano Lett., vol. 7, pp. 1−4, Dec. 2013. [72]K. J. Jiang, J. B. Xia, N. Masaki, S. Noda, and S. Yanagida, “Efficient sensitization of nanocrystalline TiO2 films with high molar extinction coefficient ruthenium complex,” Inorg. Chim. Acta, vol. 361, pp. 783−785, Feb. 2008. [73]U. Mehmood, “Efficient and economical dye-sensitized solar cells based on graphene/TiO2 nanocomposite as a photoanode and graphene as a Pt-free catalyst for counter electrode,” Org. Electron., vol. 42, pp. 187−193, Mar. 2017. [74]S. Z. Siddick, C. W. Lai, and J. C. Juan, “An investigation of the dye-sensitized solar cell performance using graphene-titania (TrGO) photoanode with conventional dye and natural green chlorophyll dye,” Mater. Sci. Semicond. Process., vol. 74, pp. 267−276, Feb. 2018. [75]D. Lee, “Thermophysical properties of interfacial layer in nanofluids,” Langmuir, pp. 6011–6018, Apr. 2007. [76]P. Haas, F. Tran, and P. blaha, “Calculation of the lattice constant of solids with semilocal functionals,” Phys. Rev. B, vol. 79, Feb. 2009. [77]D. A. Stevens and J. R. Dahn, “Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells,” J. Electrochem. Soc., vol. 150, pp. 770−775, Jun. 2003. [78]X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,” J. Electroanal. Chem., vol. 570, pp. 257−263, Sep. 2004. [79]K. J. Lee, H. Seo, M. K. Son, M. Kim, J. T. Hong, and H. J. Kim, “Effect of the sputtering thickness and angle of Pt film on a counter electrode on the efficiency of a dye-sensitized solar cell,” Photovoltaic Specialists Conference, May 2008. [80]P. Zhai, H. Lee, Y. T. Huang, T. H. Wei, and S. P. Feng, “Study on the blocking effect of a quantum-dot TiO2 compact layer in dye-sensitized solar cells with ionic liquid electrolye under low-intensity illumination,” J. Power Sources, vol. 329, pp. 502−509, Sep. 2016. [81]J. L. Lan, T. C. Wei, S. P. Feng, C. C. Wan, and G. Cao, “Effect of iodine content in the electrolye on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities,” J. Phys. Chem., vol. 116, pp. 25727−25733, Nov. 2012. [82]P. Salvador, M. G. Hidalgo, A. Zaban, and J. Bisquert, “Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells,” J. Phys. Chem. B, vol. 109, pp. 15915−15926, Jul. 2005.
|