跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛凰均
研究生(外文):Huang-Chun Hsueh
論文名稱:急性熱緊迫對L2品系台灣土雞公雞下視丘基因表現與DNA甲基化之影響
論文名稱(外文):Effect of acute heat stress on gene expression and DNA methylation in the hypothalamus of male L2 strain Taiwan country chickens
指導教授:黃三元
口試委員:陳洵一林恩仲陳怡蓁
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:106
中文關鍵詞:台灣土雞急性熱緊迫下視丘基因表現DNA甲基化
外文關鍵詞:Taiwan country chickensacute heat stresshypothalamusdifferentially expressed genesDNA methylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
熱緊迫使畜禽生長與生殖性能低落,嚴重熱緊迫會增加動物死亡率。下視丘為禽類體溫調節中樞,可以偵測外在環境溫度變化。表觀遺傳學為不改變DNA序列前提下透過鹼基上的化學修飾影響基因表現,啟動子上的DNA甲基化修飾通常被認為和基因靜默有關,環境熱緊迫也可能改變動物體內表觀遺傳修飾而使動物耐過或適應不利生存的環境。目前尚缺乏急性熱緊迫對於禽類下視丘基因表現與表觀遺傳影響之研究,本研究之目的為探討急性熱緊迫對L2品系台灣土雞公雞下視丘基因表現之影響以及DNA甲基化修飾是否造成基因差異表現。本研究使用197隻30週齡L2品系台灣土雞公雞,於熱緊迫實驗前逢機挑選五隻作為對照組,飼養在25℃且相對溼度55%環控氣候室;其餘192隻公雞接受38℃、相對溼度55%的急性熱緊迫四小時;熱緊迫處理後,所有公雞會依據體溫差(加熱期間體溫最大值減去加熱前體溫)分成熱敏感組(體溫差≧6.5℃)與熱抵抗組(體溫差≦2.5℃),在試驗結束後每組取五隻雞採其下視丘樣品供後續分析。L2品系公雞下視丘急性熱緊迫後之mRNA表現、DNA甲基化程度定量與定性分別以RNA定序(RNA sequencing, RNA-seq)、焦磷酸定序(pyrosequencing, Pyro-seq)與甲基化特異性PCR (methylation specific PCR, MS-PCR)進行。急性熱緊迫處理後公雞下視丘差異表現基因(differentially expressed genes, DEGs)中有1,690個基因表現量顯著增加與819個基因表現量顯著減少;經生物功能(gene ontology)註解後可知此等差異表現基因主要參與細胞過程、代謝過程及生物性調節;急性熱緊迫顯著改變下視丘中熱緊迫蛋白家族(HSPB1、HSPB8、HSPB9及DNAJA4)、抗氧化酶(GPX1)、下視丘緊迫調節(FKBP5)與DNA甲基化與轉錄因子結合蛋白(DNMT3A及CREBBP)之表現量。MS-PCR結果顯示HSPB1在三組雞隻均為部分甲基化,HSPB8則皆為高度甲基化;HSPB9在對照組與熱敏感組雞隻為部分甲基化,在熱抵抗組雞隻為低度至部份甲基化;GPX1在對照組與熱敏感組雞隻為部分甲基化,在熱抵抗組雞隻為低度至部分甲基化。Pyro-seq結果顯示熱敏感組雞隻HSPB8、GPX1與DNMT3A啟動子內特定CpG位點之甲基化程度顯著高於抵抗組者。由本研究結果可知,急性熱緊迫可能改變台灣土雞公雞下視丘與緊迫調節、細胞凋亡、下視丘功能及抗氧化酶相關基因mRNA表現而保護下視丘免於急性熱緊迫帶來的損傷;Pyro-seq結果與RNA-seq部分呈現矛盾的現象,其原因可能為本研究分析之序列並非轉錄因子結合之位點,所以該位點甲基化程度的增加並不一定會降低該基因之表現,因此,該序列是否為轉錄因子結合位點有待進一步探討。
Heat stress causes poor growth performance, reproductive performance, and high mortality in farm animals. The hypothalamus acts as a crucial center to regulate body temperature and detect environmental temperature changes. Epigenetics is the study of genomic structural modifications that affects gene expression without altering the underlying nucleotide sequence. DNA methylation modifications on the CpG sites of promoter are generally thought to be related to gene silencing, and heat stress may alter epigenetic modifications to allow animals withstand or adapt to the environment stress. The purpose of this study was to investigate the effect of acute heat stress on gene expression and to explore whether the modification of DNA methylation affects gene expression in layer-type L2 strain Taiwan country chickens (TCCs). A total of 197 30-week-old roosters of L2 strain TCCs were used in this study. One hundred and nighty-two roosters were acute heat-stressed at 38°C and 55% RH for 4 h. After acute heat stress, the roosters were grouped according to the body temperature change (highest body temperature during heat stress minus pre-heat stress body temperature, ΔT), including sensitive group (Sen.) with ΔT≧6.5 and resistant group (Res.) with ΔT≦2.5. The other five roosters were kept at 25°C and 55% RH as a control group (Ctl.). The hypothalamus of five roosters in each group were collected for RNA sequencing (RNA-seq) and DNA methylation analysis by pyrosequencing (Pyro-seq) and methylation specific PCR (MS-PCR). There were 1,690 genes upregulated and 819 genes downregulated among the differentially expressed genes (DEGs) after acute heat stress in the hypothalamus of L2 strain TCCs. Gene ontology annotation indicated that most of the DEGs were involved in biological processes of cellular process, metabolic process and biological regulation. The expressions of genes in HSP family (HSPB1, HSPB8, HSPB9 and DNAJA4), antioxidant (GPX1), hypothalamus function (FKBP5), and DNA methylation and transcription (DNMT3A and CREBBP) were significantly changed and were selected for further DNA methylation analysis. Result of MS-PCR revealed that HSPB1 was partially methylated and HSPB8 was highly methylated in the three groups of roosters; HSPB9 was partially methylated in CTL group and SEN group and hypo- to partially methylated in RES group; GPX1 was partially methylated in CTL group and SEN group and hypomethylated to partially methylated in RES group. Pyro-seq revealed that the methylation level of specific CpG site in HSPB8、GPX1 and DNMT3A were higher in SEN group than RES group. In summary, acute heat stress changes the expression of genes related to the response to stimuli, antioxidant, and hypothalamus function of hypothalamus in TCCs. Moreover, some of the Pyro-seq results were partially conflict with the RNA-seq results. The possible reason may be that the sequences analyzed are not the transcription factor binding sites, thus the increase of methylation level did not reduce the level of gene expression. Therefore, whether the sequences are transcription factor binding sites require further exploration.
中文摘要.................................................i
Abstract...............................................ii
表次...................................................vi
圖次..................................................vii
壹、前言................................................1
貳、文獻探討............................................2
一、緊迫定義與熱緊迫.....................................2
二、雞隻體溫調節.........................................2
三、熱緊迫對雞隻生理與代謝的影響...........................3
四、下視丘與體溫調節.....................................3
(一)下視丘的位置與結構...................................3
(二)下視丘與體溫調節.....................................4
五、雞隻熱緊迫反應之功能性基因體學探討.....................5
六、表觀遺傳學定義與禽類DNA甲基化之研究現況................7
(一)表觀遺傳學(Epigenetics).............................8
(二)DNA甲基化(DNA methylation)..........................8
(三)DNA甲基化在禽類的研究現況............................10
七、研究目的...........................................11
參、材料方法...........................................12
一、試驗動物飼養管理....................................12
二、急性熱緊迫試驗與雞隻分群.............................12
三、雞隻下視丘RNA樣品製備與分析..........................13
(一)下視丘RNA的萃取...................................13
(二)RNA定序(RNA-Sequencing, RNA-seq)分析..............13
(三)差異表現基因(Differentially expressed genes, DEG)的挑選.....................................................13
(四)差異表現基因之生物功能分析...........................13
(五)即時定量聚合酶連鎖反應(Quantitative real-time polymerase chain reaction, qRT-PCR)...............................14
四、雞隻下視丘DNA樣品製備與分析...........................14
(一)下視丘DNA的萃取.....................................14
(二)DNA濃度與品質檢測...................................15
(三)DNA經重亞硫酸鹽轉換(DNA bisulfite conversion)........15
(四)甲基特異性聚合酶鏈鎖反應分析(Methylation specific PCR, MS-PCR)................................................17
(五)焦磷酸定序分析(Pyrosequencing, pyro-seq).............17
五、統計分析............................................20
肆、結果................................................24
一、急性熱緊迫後各組雞隻體溫差結果之比較...................24
二、急性熱緊迫對L2品系台灣土雞公雞下視丘基因表現之影響 .......................................................25
三、急性熱緊迫後L2品系台灣土雞公雞下視丘表現量增加基因之生物功能註解...................................................26
四、急性熱緊迫後L2品系台灣土雞公雞下視丘表現量減少基因之生物功能註解...................................................26
五、以qRT-PCR驗證基因之差異表現..........................26
六、挑選差異表現兩倍以上的DEGs經MS-PCR分析之結果...........31
七、差異表現基因焦磷酸定序(pyrosequencing)分析之結果.....................................................33
伍、討論................................................40
一、急性熱緊迫對L2品系台灣土雞公雞下視丘基因表現之影響......40
(一)急性熱緊迫影響熱緊迫蛋白質(heat shock proteins, HSPs)相關基因.................................................40
(二)急性熱緊迫影響下視丘中抗氧化相關基因...................41
(三)急性熱緊迫影響下視丘與緊迫反應相關基因之表現............42
(四)急性熱緊迫影響轉錄相關基因之表現.......................42
(五)急性熱緊迫影響細胞凋亡相關途徑........................43
二、受急性熱緊迫影響基因之DNA甲基化修飾....................45
(一)RNA-seq結果與pyrosequencing結果比較..................45
(二)MS-PCR結果與pyrosequencing結果比較...................46
陸、結論................................................49
柒、參考文獻............................................50
捌、附表................................................59
白火城、吳雨新、林仁壽。2003。家畜內分泌學。藝軒圖書出版社。台北市。
李淵百。1992。台灣的土雞。國立中興大學。台中市。
曾耀進。2017。次世代定序技術應用在乳癌的研究。碩士論文。國立中山大學。高雄市。
楊錫坤。2018。動物解剖生理學。藝軒圖書出版社。台北市。
Abdul, K. M., K. Terada, T. Gotoh, R. M. Hafizur, and M. Mori. 2002. Characterization and functional analysis of a heart-enriched DNAJ/HSP40 homolog DJ4/DJA4. Cell Stress Chaperones 7:156-166.
Akiba, Y., K. Takahashi, M. Kimura, S. I. Hirama, and T. Matsumoto. 1983. The influence of environmental temperature, thyroid status and a synthetic oestrogen on the induction of fatty livers in chicks. Br. Poult. Sci. 24:71-80.
Anway, M. D., A. S. Cupp, M. Uzumcu, and M. K. Skinner. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466-1469.
Arndt, V., N. Dick, R. Tawo, M. Dreiseidler, D. Wenzel, M. Hesse, D. O. Fürst, P. Saftig, R. Saint, and B. K. Fleischmann. 2010. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20:143-148.
Bakthisaran, R., R. Tangirala, and C. M. Rao. 2015. Small heat shock proteins: Role in cellular functions and pathology. Biochim. Biophys. Acta. 1854:291-319.
Bechtold, D. A., and I. R. Brown. 2003. Induction of HSP27 and HSP32 stress proteins and vimentin in glial cells of the rat hippocampus following hyperthermia. Neurochem. Res. 28:1163-1173.
Behrend, L., G. Henderson, and R. Zwacka. 2003. Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 6:1441-1444.
Belhadj Slimen, I., T. Najar, A. Ghram, and M. Abdrrabba. 2016. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 100:401-412.
Bianca, W., and P. Kunz. 1978. Physiological reactions of three breeds of goats to cold, heat and high altitude. Livest. Prod. Sci. 5:57-69.
Binder, E. B. 2009. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34:186-195.
Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6-21.
Bird, A. P. 1986. Cpg-rich islands and the function of DNA methylation. Nature 321:209-213.
Borges, S., A. Fischer Da Silva, A. Majorka, D. Hooge, and K. Cummings. 2004. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult. Sci. 83:1551-1558.
Budanov, A. V., A. A. Sablina, E. Feinstein, E. V. Koonin, and P. M. Chumakov. 2004. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial ahpd. Science 304:596-600.
Budanov, A. V., T. Shoshani, A. Faerman, E. Zelin, I. Kamer, H. Kalinski, S. Gorodin, A. Fishman, A. Chajut, and P. Einat. 2002. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 21:6017-6031.
Burgess, W. H., and T. Maciag. 1989. The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58:575-602.
Cao, G., X. Ni, M. Jiang, Y. Ma, H. Cheng, L. Guo, C. Ji, S. Gu, Y. Xie, and Y. Mao. 2002. Molecular cloning and characterization of a novel human camp response element-binding (CREB) gene (CREB4). J. Hum. Genet. 47:373-376.
Chen, X. Y., P. P. Wei, S. Y. Xu, Z. Y. Geng, and R. S. Jiang. 2013. Rectal temperature as an indicator for heat tolerance in chickens. Anim. Sci. J. 84:737-739.
Cheng, C. Y., W. L. Tu, C. J. Chen, H. L. Chan, C. F. Chen, H. H. Chen, P. C. Tang, Y. P. Lee, S. E. Chen, and S. Y. Huang. 2017. Proteomic analysis of thermal regulation of small yellow follicles in broiler-type Taiwan country chickens. J. Poult. Sci. 0170069.
Cheng, C. Y., W. L. Tu, C. J. Chen, H. L. Chan, C. F. Chen, H. H. Chen, P. C. Tang, Y. P. Lee, S. E. Chen, and S. Y. Huang. 2018. Functional genomics study of acute heat stress response in the small yellow follicles of layer-type chickens. Sci. Rep. 8:1320-1330.
Cheng, C. Y., W. L. Tu, S. H. Wang, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, S. E. Chen, and S. Y. Huang. 2015. Annotation of differential gene expression in small yellow follicles of a broiler-type strain of Taiwan country chickens in response to acute heat stress. PLoS ONE 10:e0143418.
Coble, D. J., D. Fleming, M. E. Persia, C. M. Ashwell, M. F. Rothschild, C. J. Schmidt, and S. J. Lamont. 2014. Rna-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genomics 15:1084-1095.
Cokus, S. J., S. Feng, X. Zhang, Z. Chen, B. Merriman, C. D. Haudenschild, S. Pradhan, S. F. Nelson, M. Pellegrini, and S. E. Jacobsen. 2008. Shotgun bisulphite sequencing of the arabidopsis genome reveals DNA methylation patterning. Nature 452:215-219.
Cui, X., X. Jing, X. Wu, M. Yan, Q. Li, Y. Shen, and Z. Wang. 2016. DNA methylation in spermatogenesis and male infertility. Exp. Ther. Med. 12:1973-1979.
David, S. A., M. Mersch, S. Foissac, A. Collin, F. Pitel, and V. Coustham. 2017. Genome-wide epigenetic studies in chicken: A review. Epigenomes 1:20.
Du, J., H. S. Di, L. Guo, Z. H. Li, and G. L. Wang. 2008. Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J. Therm. Biol. 33:37-47.
Dunning, J. 2006. Genetic manipulation of learning and memory. Chapther 13: Gene therapy of the central nervous system. Page 167-179. Eds M. G. Kaplitt and M. J. During. Academic Press. Amsterdam. Nederland.
Ebert, S. M., M. C. Dyle, S. D. Kunkel, S. A. Bullard, K. S. Bongers, D. K. Fox, J. M. Dierdorff, E. D. Foster, and C. M. Adams. 2012. Stress-induced skeletal muscle GADD45A expression reprograms myonuclei and causes muscle atrophy. J. Biol. Chem. 287:27290-27301.
Eckhardt, F., J. Lewin, R. Cortese, V. K. Rakyan, J. Attwood, M. Burger, J. Burton, T. V. Cox, R. Davies, and T. A. Down. 2006a. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38:1378-1385.
Egger, G., G. Liang, A. Aparicio, and P. Jones. 2004. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457.
Feder, M. E., and G. E. Hofmann. 1999. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243-282.
Feeney, A., E. Nilsson, and M. K. Skinner. 2014. Epigenetics and transgenerational inheritance in domesticated farm animals. J. Anim. Sci. Biotechnol. 5:48.
Fields, S. D., P. J. Hansen, and A. D. Ealy. 2011. Fibroblast growth factor requirements for in vitro development of bovine embryos. Theriogenology 75:1466-1475.
Fornace, A., D. Nebert, M. Hollander, J. Luethy, M. Papathanasiou, J. Fargnoli, and N. Holbrook. 1989. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol. 9:4196-4203.
Gober, M. D., C. C. Smith, K. Ueda, J. A. Toretsky, and L. Aurelian. 2003. Forced expression of the H11 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J. Biol. Chem. 278:37600-37609.
Golding, M. C., G. L. Williamson, T. K. Stroud, M. E. Westhusin, and C. R. Long. 2011. Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for DNMT1 in bovine development. Mol. Reprod. Dev. 78:306-317.
Goll, M. G., and T. H. Bestor. 2005. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74:481-514.
Habashy, W. S., M. C. Milfort, R. Rekaya, and S. E. Aggrey. 2018. Expression of genes that encode cellular oxidant/antioxidant systems are affected by heat stress. Mol. Biol. Rep. 45:389-394.
Hammouda, M. 1933. The central and the reflex mechanism of panting. J. Physiol. 77:319-336.
Hao, Y., Y. Cui, and X. Gu. 2016. Genome-wide DNA methylation profiles changes associated with constant heat stress in pigs as measured by bisulfite sequencing. Sci. Rep. 6:27507-27520.
Haupt, S., M. Berger, Z. Goldberg, and Y. Haupt. 2003. Apoptosis-the p53 network. J. Cell Sci. 116:4077-4085.
Herman, J. G., J. R. Graff, S. Myohanen, B. D. Nelkin, and S. B. Baylin. 1996. Methylation-specific pcr: A novel pcr assay for methylation status of cpg islands. Proc. Natl. Acad. Sci. U. S. A. 93:9821-9826.
Horowitz, M. 2002. From molecular and cellular to integrative heat defense during exposure to chronic heat. Comp. Biochem. Physiol. A Physiol. 131:475-483.
Hu, Y., Q. Sun, X. Li, M. Wang, D. Cai, X. Li, and R. Zhao. 2015. In ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks. PLoS ONE 10:e0122643.
Huang, Z., C. F. Bassil, and S. K. Murphy. 2013. Methylation-specific PCR. Page 75-82. Ovarian cancer. National Collaborating Centre for Cancer. UK.
Ito, A., M. Shinkai, H. Honda, and T. Kobayashi. 2001. Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 8:649-654.
Jaenisch, R., and A. Bird. 2003. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 33:245-254.
Jones, P. A. 2012. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13:484-492.
Jones, P. A., and D. Takai. 2001. The role of DNA methylation in mammalian epigenetics. Science 293:1068-1070.
Jurkowska, R. Z., T. P. Jurkowski, and A. Jeltsch. 2011. Structure and function of mammalian DNA methyltransferases. Chem. Bio. Chem. 12:206-222.
Kaneda, M., M. Okano, K. Hata, T. Sado, N. Tsujimoto, E. Li, and H. Sasaki. 2004. Essential role for de novo DNA methyltransferase dnmt3a in paternal and maternal imprinting. Nature 429:900.
Katoh, Y., M. Fujimoto, K. Nakamura, S. Inouye, K. Sugahara, H. Izu, and A. Nakai. 2004. Hsp25, a member of the HSP30 family, promotes inclusion formation in response to stress. FEBS Lett. 565:28-32.
Katschinski, D. M. 2004. On heat and cells and proteins. News Physiol. Sci. 19:11-15.
Kim, D., G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg. 2013. Tophat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:1.
Kim, K. D., M. El Baidouri, and S. Jackson. 2014. Accessing epigenetic variation in the plant methylome. Brief. Funct. Genomics 13:318-327.
Kim, J. H., A. Qu, J. K. Reddy, B. Gao, and F. J. Gonzalez. 2014. Hepatic oxidative stress activates the GADD45b gene by way of degradation of the transcriptional repressor stat3. J. Hepatol. 59:695-704.
Kirbach, B. B., and N. Golenhofen. 2011. Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons. J. Neurosci. Res. 89:162-175.
Kisliouk, T., and N. Meiri. 2009. A critical role for dynamic changes in histone h3 methylation at the bdnf promoter during postnatal thermotolerance acquisition. Eur. J. Neurosci. 30:1909-1922.
Kourtis, N., and N. Tavernarakis. 2011. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 30:2520-2531.
Kregel, K. C. 2002. Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92:2177-2186.
Løtvedt, P., A. Fallahshahroudi, L. Bektic, J. Altimiras, and P. Jensen. 2017. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiol. Stress 7:113-121.
Lamoureux, F., C. Thomas, M.-J. Yin, L. Fazli, A. Zoubeidi, and M. E. Gleave. 2014. Suppression of heat shock protein 27 using Ogx-427 induces endoplasmic reticulum stress and potentiates heat shock protein 90 inhibitors to delay castrate-resistant prostate cancer. Eur. Urol. 66:145-155.
Lan, X., J. C. Hsieh, C. J. Schmidt, Q. Zhu, and S. J. Lamont. 2016. Liver transcriptome response to hyperthermic stress in three distinct chicken lines. BMC Genomics 17:955-965.
Laufen, T., M. P. Mayer, C. Beisel, D. Klostermeier, A. Mogk, J. Reinstein, and B. Bukau. 1999. Mechanism of regulation of HSP70 chaperones by DNAJ cochaperones. Proc. Natl. Acad. Sci. U. S .A. 96:5452-5457.
Lee, R. S., K. L. Tamashiro, X. Yang, R. H. Purcell, A. Harvey, V. L. Willour, Y. Huo, M. Rongione, G. S. Wand, and J. B. Potash. 2010. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of FKBP5 in mice. Endocrinology 151:4332-4343.
Lee, R. S., and A. Sawa. 2014. Environmental stressors and epigenetic control of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 100:278-287.
Levenson, J. M., T. L. Roth, F. D. Lubin, C. A. Miller, I.-C. Huang, P. Desai, L. M. Malone, and J. D. Sweatt. 2006. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281:15763-15773.
Lewis, S. E., R. J. Mannion, F. A. White, R. E. Coggeshall, S. Beggs, M. Costigan, J. L. Martin, W. H. Dillmann, and C. J. Woolf. 1999. A role for HSP27 in sensory neuron survival. J. Neurosci. Res. 19:8945-8953.
Li, J., R. Li, Y. Wang, X. Hu, Y. Zhao, L. Li, C. Feng, X. Gu, F. Liang, S. J. Lamont, S. Hu, H. Zhou, and N. Li. 2015. Genome-wide DNA methylome variation in two genetically distinct chicken lines using methylc-seq. BMC Genomics 16:851-868.
Li, Q., N. Li, X. Hu, J. Li, Z. Du, L. Chen, G. Yin, J. Duan, H. Zhang, Y. Zhao, J. Wang, and N. Li. 2011. Genome-wide mapping of DNA methylation in chicken. PLoS ONE 6:e19428.
Li, S., L. Zhi, Y. Liu, J. Shen, L. Liu, J. Yao, and X. Yang. 2016. Effect of in ovo feeding of folic acid on the folate metabolism, immune function and epigenetic modification of immune effector molecules of broiler. Br. J. Nutr. 115:411-421.
Li, X., D. Wu, and Y. Tian. 2018. Fibroblast growth factor 19 protects the heart from oxidative stress-induced diabetic cardiomyopathy via activation of ampk/nrf2/ho-1 pathway. Biochem. Biophys. Res. Commun. 502:62-68.
Liu, F. W., F. C. Liu, Y. R. Wang, H. I. Tsai, and H. P. Yu. 2015. Aloin protects skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PLoS ONE 10:e0143528.
Luo, J., Y. Yu, F. Tian, H. Zhang, S. Chang, and J. Song. 2012. DNA methylation fluctuation induced by virus infection differs between md-resistant and-susceptible chickens. Eur. J. Neurosci. 3:2267-2277.
Lyko, F. 2017. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19:81-92.
Miller, C. A., and J. D. Sweatt. 2007. Covalent modification of DNA regulates memory formation. Neuron. 53:857-869.
Miskinyte, S., M. G. Butler, D. Hervé, C. Sarret, M. Nicolino, J. D. Petralia, F. Bergametti, M. Arnould, V. N. Pham, and A. V. Gore. 2011. Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am. J. Hum. Genet. 88:718-728.
Monson, M. S., A. G. Van Goor, C. M. Ashwell, M. E. Persia, M. F. Rothschild, C. J. Schmidt, and S. J. Lamont. 2018. Immunomodulatory effects of heat stress and lipopolysaccharide on the bursal transcriptome in two distinct chicken lines. BMC Genomics 19:643-657.
Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788-3796.
Murugesan, S., R. Ullengala, and V. Amirthalingam. 2017. Heat shock protein and thermal stress in chicken. Heat shock proteins in veterinary medicine and sciences. Page 179-193. Eds A. A. Alexzander and K. Punit. Springer, Cham, Switzerland.
Mymrikov, E. V., A. S. Seit-Nebi, and N. B. Gusev. 2011. Large potentials of small heat shock proteins. Physiol. Rev. 91:1123-1159.
Nasu, K., Y. Kawano, Y. Tsukamoto, M. Takano, N. Takai, H. Li, Y. Furukawa, W. Abe, M. Moriyama, and H. Narahara. 2011. Aberrant DNA methylation status of endometriosis: Epigenetics as the pathogenesis, biomarker and therapeutic target. J. Obstet. Gynaecol. Res. 37:683-695.
Nawab, A., F. Ibtisham, G. Li, B. Kieser, J. Wu, W. Liu, Y. Zhao, Y. Nawab, K. Li, and M. Xiao. 2018. Heat stress in poultry production; mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 78:131-139.
Nätt, D., N. Lindqvist, H. Stranneheim, J. Lundeberg, P. A. Torjesen, and P. Jensen. 2009. Inheritance of acquired behaviour adaptations and brain gene expression in chickens. PLoS ONE 4:e6405.
Nishikawa, K., Y. Iwamoto, Y. Kobayashi, F. Katsuoka, S. I. Kawaguchi, T. Tsujita, T. Nakamura, S. Kato, M. Yamamoto, and H. Takayanagi. 2015. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an s-adenosylmethionine–producing metabolic pathway. Nat. Med. 21:281-287.
Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953-959.
Porta, H., A. Cancino-Rodezno, M. Soberón, and A. Bravo. 2011. Role of MAPK p38 in the cellular responses to pore-forming toxins. Peptides 32:601-606.
Qiu, F., L. Xie, J. E. Ma, W. Luo, L. Zhang, Z. Chao, S. Chen, Q. Nie, Z. Lin, and X. Zhang. 2017. Lower expression of SLC27A1 enhances intramuscular fat deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. Front Physiol. 8:449-463.
Quigley. 2001. Environmental effects on calf feeding – basic concepts. Calf notes. com (http://www.calfnotes.com/).
Quinteiro-Filho, W. M., M. V. Rodrigues, A. Ribeiro, V. Ferraz-De-Paula, M. L. Pinheiro, L. R. Sa, A. J. Ferreira, and J. Palermo-Neto. 2012. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: Role of acute hypothalamic-pituitary-adrenal axis activation. J. Anim. Sci. 90:1986-1994.
Rajaei-Sharifabadi, H., E. Greene, A. Piekarski, D. Falcon, L. Ellestad, A. Donoghue, W. Bottje, T. Porter, Y. Liang, and S. Dridi. 2017. Surface wetting strategy prevents acute heat exposure-induced alterations of hypothalamic stress- and metabolic-related genes in broiler chickens. J. Anim. Sci. 95:1132-1143.
Rajender, S., K. Avery, and A. Agarwal. 2011. Epigenetics, spermatogenesis and male infertility. Mutat. Res. 727:62-71.
Richard, H., M. H. Schulz, M. Sultan, A. Nurnberger, S. Schrinner, D. Balzereit, E. Dagand, A. Rasche, H. Lehrach, M. Vingron, S. A. Haas, and M. L. Yaspo. 2010. Prediction of alternative isoforms from exon expression levels in rna-seq experiments. Nucleic Acids Res. 38:e112.
Robertson, K. D. 2001. DNA methylation, methyltransferases, and cancer. Oncogene 20:3139-3155.
Ropp, M., A. Courgeon, R. Calvayrac, and M. Best-Belpomme. 1983. The possible role of the superoxide ion in the induction of heat-shock and specific proteins in aerobic drosophila cells during return to normoxia after a period of anaerobiosis. Can. J. Biochem. Cell Biol. 61:456-461.
Roushdy, E. M., A. W. Zaglool, and M. S. El-Tarabany. 2018. Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains. J. Therm. Biol. 74:337-343.
Sablina, A. A., A. V. Budanov, G. V. Ilyinskaya, L. S. Agapova, J. E. Kravchenko, and P. M. Chumakov. 2005. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11:1306-1313.
Scharf, S. H., C. Liebl, E. B. Binder, M. V. Schmidt, and M. B. Müller. 2011. Expression and regulation of the FKBP5 gene in the adult mouse brain. PLoS ONE 6:e16883.
Selye, H. 1976. Forty years of stress research: Principal remaining problems and misconceptions. Can. Med. Assoc. J. 115:53-56.
Shemetov, A. A., A. S. Seit‐Nebi, and N. B. Gusev. 2008. Structure, properties, and functions of the human small heat‐shock protein HSP22 (HSPB8, H11, E2IG1): A critical review. J. Neurosci. Res. 86:264-269.
Shi, G. X., W. Cai, and D. A. Andres. 2012. Rit-mediated stress resistance involves a p38-mitogen-and stress-activated protein kinase 1 (MSK1)-dependent camp response element-binding protein (CREB) activation cascade. J. Bio. Chem. 287:39859-39868.
Shimizu, S., Y. Eguchi, W. Kamiike, S. Waguri, Y. Uchiyama, H. Matsuda, and Y. Tsujimoto. 1996. Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ice inhibitors: Possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 12:2045-2050.
Skinner, M. K., M. Manikkam, and C. Guerrero-Bosagna. 2010. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol. Metab. 21:214-222.
Slawinska, A., J. C. Hsieh, C. J. Schmidt, and S. J. Lamont. 2016. Heat stress and lipopolysaccharide stimulation of chicken macrophage-like cell line activates expression of distinct sets of genes. PLoS ONE 11:e0164575.
Smith, M. L., J. M. Ford, M. C. Hollander, R. A. Bortnick, S. A. Amundson, Y. R. Seo, C. X. Deng, P. C. Hanawalt, and A. J. Fornace. 2000. p53-mediated DNA repair responses to UV radiation: Studies of mouse cells lacking p53, p21, and/or GADD45 genes. Mol. Cell. Biol. 20:3705-3714.
Smith, Z. D., and A. J. N. R. G. Meissner. 2013. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 14:204-220.
Sun, L., S. J. Lamont, A. M. Cooksey, F. Mccarthy, C. O. Tudor, K. Vijay-Shanker, R. M. Derita, M. Rothschild, C. Ashwell, and M. E. Persia. 2015. Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones 20:939-950.
Tan, G. Y., L. Yang, Y. Q. Fu, J. H. Feng, and M. H. Zhang. 2010. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poult. Sci. 89:115-122.
Tan, Y., J. Rouse, A. Zhang, S. Cariati, P. Cohen, and M. J. Comb. 1996. FGF and stress regulate CREB and ATF‐1 via a pathway involving p38 map kinase and MAPK kinase‐2. EMBO J. 15:4629-4642.
Triantaphyllopoulos, K. A., I. Ikonomopoulos, and A. J. Bannister. 2016. Epigenetics and inheritance of phenotype variation in livestock. Epigenet. Chromatin. 9:31-48.
Tu, W. L., C. Y. Cheng, C. J. Chen, H. L. Chan, S. H. Wang, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, S. E. Chen, and S. Y. Huang. 2018. Proteomic analysis of the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress. Anim. Sci. J. 89:1475-1485.
Tu, W. L., C. Y. Cheng, S. H. Wang, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, S. E. Chen, and S. Y. Huang. 2016. Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress. Theriogenology 85:483-494.
Tzschentke, B., and D. Basta. 2000. Development of hypothalamic neuronal thermosensitivity in birds during the perinatal period. J. Thermal. Biol. 25:119-123.
Ubuka, T., and G. E. Bentley. 2011. Hormone and reproduction of veterbrate. Chapter 1: Neuroendocrine control of reproduction in birds. Page 1-25. Eds D. O. Norris and K. H. Lopez. Academic Press. London, U.K.
Van Goor, A., C. M. Ashwell, M. E. Persia, M. F. Rothschild, C. J. Schmidt, and S. J. Lamont. 2017. Unique genetic responses revealed in RNA-seq of the spleen of chickens stimulated with lipopolysaccharide and short-term heat. PLoS ONE 12:e0171414.
Velasco-Miguel, S., L. Buckbinder, P. Jean, L. Gelbert, R. Talbott, J. Laidlaw, B. Seizinger, and N. Kley. 1999. Pa26, a novel target of the p53 tumor suppressor and member of the gadd family of DNA damage and growth arrest inducible genes. Oncogene 18:127-137.
Verhulst, E. C., A. C. Mateman, M. V. Zwier, S. P. Caro, K. J. Verhoeven, and K. Van Oers. 2016. Evidence from pyrosequencing indicates that natural variation in animal personality is associated with drd 4 DNA methylation. Mol. Ecol. 25:1801-1811.
Vinoth, A., T. Thirunalasundari, M. Shanmugam, A. Uthrakumar, S. Suji, and U. Rajkumar. 2018. Evaluation of DNA methylation and mrna expression of heat shock proteins in thermal manipulated chicken. Cell Stress Chaperones 23:235-252.
Wang, B. X., B. L. Yin, B. He, C. Chen, M. Zhao, W. Xing Zhang, Z. K. Xia, Y. Zhi Pan, J. Qun Tang, and X. Min Zhou. 2012. Overexpression of DNA damage-induced 45 α gene contributes to esophageal squamous cell cancer by promoter hypomethylation. J. Exp. Clin. Cancer Res. 31:11-23.
Wang, S. H., C. Y. Cheng, C. J. Chen, H. L. Chan, H. H. Chen, P. C. Tang, C. F. Chen, Y. P. Lee, and S. Y. Huang. 2018. Acute heat stress changes protein expression in the testes of a broiler-type strain of Taiwan country chickens. Anim. Biotechnol. 30:129-145.
Wang, S. H., C. Y. Cheng, C. J. Chen, H. H. Chen, P. C. Tang, C. F. Chen, Y. P. Lee, and S. Y. Huang. 2014. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress. Theriogenology 82:80-94.
Wang, S. H., C. Y. Cheng, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, and S. Y. Huang. 2013. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology 79:374-382.
Wang, S. H., C. Y. Cheng, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, and S. Y. Huang. 2015. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens. PLoS ONE 10:e0125816.
Wempe, F., S. De-Zolt, K. Koli, T. Bangsow, N. Parajuli, R. Dumitrascu, A. Sterner-Kock, N. Weissmann, J. Keski-Oja, and H. Von Melchner. 2010. Inactivation of sestrin 2 induces TGF-β signaling and partially rescues pulmonary emphysema in a mouse model of copd. Dis. Model. Mech. 3:246-253.
Wu, D., J. Xu, E. Song, S. Tang, X. Zhang, N. Kemper, J. Hartung, and E. Bao. 2015. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced HSP27 expression. Cell Stress Chaperones 20:687-696.
Wu, D., M. Zhang, J. Xu, E. Song, Y. Lv, S. Tang, X. Zhang, N. Kemper, J. Hartung, and E. Bao. 2016. In vitro evaluation of aspirin-induced HSPB1 against heat stress damage in chicken myocardial cells. Cell Stress Chaperones 21:405-413.
Xie, J., L. Tang, L. Lu, L. Zhang, X. Lin, H. C. Liu, J. Odle, and X. Luo. 2015. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poult. Sci. 94:1635-1644.
Xie, J., L. Tang, L. Lu, L. Zhang, L. Xi, H. C. Liu, J. Odle, and X. Luo. 2014. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (gallus gallus). PLoS ONE 9:e102204.
Yahav, S. 2009. Alleviating heat stress in domestic fowl: Different strategies. World's Poult. Sci. J. 65:719-732.
Yossifoff, M., T. Kisliouk, and N. Meiri. 2008. Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain‐derived neurotrophic factor promoter. Eur. J. Neurosci. 28:2267-2277.
Yu, J., F. Liu, P. Yin, H. Zhao, W. Luan, X. Hou, Y. Zhong, D. Jia, J. Zan, and W. Ma. 2013. Involvement of oxidative stress and mitogen-activated protein kinase signaling pathways in heat stress-induced injury in the rat small intestine. Stress 16:99-113.
Zaboli, G. R., S. Rahimi, F. Shariatmadari, M. a. K. Torshizi, A. Baghbanzadeh, and M. Mehri. 2016. Thermal manipulation during pre and post-hatch on thermotolerance of male broiler chickens exposed to chronic heat stress. Poult. Sci. 96:478-485.
Zhang, J., C. J. Schmidt, and S. J. Lamont. 2017. Transcriptome analysis reveals potential mechanisms underlying differential heart development in fast-and slow-growing broilers under heat stress. BMC Genomics 18:295-309.
Zhang, X., J. Yazaki, A. Sundaresan, S. Cokus, S. W.-L. Chan, H. Chen, I. R. Henderson, P. Shinn, M. Pellegrini, and S. E. Jacobsen. 2006. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189-1201.
Zhang, Z., G. Jia, J. Zuo, Y. Zhang, J. Lei, L. Ren, and D. Feng. 2012. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 91:2931-2937.
Zilberman, D., M. Gehring, R. K. Tran, T. Ballinger, and S. J. N. G. Henikoff. 2007. Genome-wide analysis of arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39:61-69.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊