跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭捷
研究生(外文):Cheng, Chieh
論文名稱:奈米粒子與生物分子複合體之設計與製備於生醫領域之應用:可控制釋放藥物傳輸系統、抗菌材料以及敷料
論文名稱(外文):Designs and Synthesis of Nanoparticle–Biomolecule Conjugates for Biological Application: Controlled-Release Drug Delivery System, Antibacterial, and Wound Dressing
指導教授:柯富祥柯富祥引用關係
指導教授(外文):Ko, Fu-Hsiang
口試委員:柯富祥劉福鯤吳忠信廖奕翰徐雍鎣
口試委員(外文):Ko, Fu-HsiangLiu, Fu-KenWu, Chung-HsinLiau, IanHsu, Yung-Jung
口試日期:2015-01-107
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:287
中文關鍵詞:奈米粒子超分子水膠抗菌敷料藥物釋放
外文關鍵詞:nanoparticlesupramolecularhydrogelantibacterialwound dressingdrug delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
近年來,將奈米材料和生醫材料做結合逐漸成為研究複合材料的熱門領域,而這樣的結合主要是為了整合兩者特性來改善或是開發出新的材料。由自然界本身存在的生物分子,如核酸和胜肽,去發展出這類生物啟發的新穎奈米粒子與生物分子的複合體將為生醫藥領域的應用提供了更多可能性。在此論文中,我們提出了兩種類型的奈米粒子與生物分子複合體並將之應用於多功能藥物釋放平台、磁刺激敷料及抗菌敷料。
針對癌症治療載體的開發一直引起許多研究者的注目,其中超順磁奈米氧化鐵及其衍生材料已經被廣泛的應用在醫療領域。我們透過共沉澱法和金硫鍵的接合建立了一個接有雙股去氧核醣核酸之金殼奈米氧化鐵核的奈米粒子來做為藥物載體,而藥物阿黴素則鑲嵌在雙股去氧核醣核酸之中。我們藉由調整不同時間的變動磁場之施加來控制釋放的行為。這個熱療過程中所產生的能量可輕易的達到去氧核醣核酸去雜交化的溫度。與傳統的擴散釋放過程相比,磁刺激釋放的釋放系統可以在短時間內有效的達成增益其釋放的表現。並且,我們加長了去氧核醣核酸的序列,在後面加上了一段適體作為辨認標的癌細胞,可使得化療過程中更準確的針對癌細胞而非正常細胞。當然,良好的生物相容性與低細胞毒性也展現在我們的載體上。進一步,我們分析了不同粒徑所帶來的各種效應影響,也因為一系列金殼層厚度的不同,遮蔽效應與表面積對癌症治療造成了不同的表現。總結來說,在高頻磁場的施加下,包裹著藥物的載體被證明確實具有殺死癌細胞的能力。由於同時具有化療與熱療的效果,搭配上專一性辨認的能力,藥物的使用量將預期的被減少,也就意味著副作用會被有效的降低。
以各種型式存在的水膠已經被廣泛的使用在日常生活中。一般定義來說,水膠是一個經由高分子交聯而成的三圍網狀結構,而在近年,一種低分子量的水膠,我們稱之為超分子水膠,已經成為新的研究對象,其特點之一是可經由熱使成膠具可恢復性,在組織工程、化學感測和藥物釋放的應用上具有巨大的潛力。因此,我們開發了一種由超分子水膠結合奈米氧化鐵粒子所製備而成的傷口敷料,這個奈米複合物具有良好的生物相容性以及對外在刺激敏感的特性,因此被視為一種新穎的生物材料,而其優越的反應能力與可被調控的可行性特別適用於藥物釋放的應用。這種獨特的超分子水膠是由2-Naphthylacetic acid (Nap)和diphenylalanine (FF) 胜肽所組成,他們可藉由自組裝的方式結合形成纖維網狀結構,而鐵奈米粒子的加入有助於提升Nap-FF凝膠因子的成膠性質。透過交流磁場的施加,磁性氧化鐵核因感應磁場而產生熱能,使得水膠加速被瓦解而釋放出大量的藥物。進一步地,對海拉細胞做細胞毒性的測試,結果顯示當它們被作為固態之傷口敷料時,它們不但表現出很良好的生物相容性,並且藉由磁場釋放的DOX藥物分子也可以有效的殺死癌細胞。根據上述的結果,這個生醫材料Nap-FF-Fe3O4被應用於傷口敷料的製作是可以期待的,且利用水膠做為藥物載體並結合磁場釋放的機制,可以使藥物更有效的被利用。
除了藥物釋放之外,另一個超分子水膠Nap-FFC被設計來當作抗菌的敷料使用。以Nap-FFC的短胜肽當作支架,用鑲埋的方式鑲入奈米銀粒子,可以製造出一個透明且穩定的包覆有奈米銀粒子的超分子水膠,這樣的合成方式對奈米銀產生了穩定作用。和純奈米銀粒子相比,包覆有奈米銀粒子的水膠明顯的展現出良好的分散性、長效的穩定性以及可撓曲的功能。此水膠進一步的展現出良好的抗菌能力,無論是對格蘭氏陰性菌或是陽性菌都擁有出色的表現。對於海拉細胞或是皮膚細胞也都具備高度的生物相容性。因此,這樣的一個由奈米銀粒子與Nap-FFC寡肽所組成的水膠,由於其製備成本低,在未來相當適合當作抗菌敷料。
然而,這種以有機分子堆疊的胜肽超分子水膠有著機械穩定性較低的問題存在,為了拓展超分子水膠的實用性與應用層面,必須要研發出一個方法來改善其機械穩定性。所以,我們提出一種創新電荷交聯法,利用Nap-FFC寡肽,與奈米金粒子(AuNPs)和鈣離子(Ca2+)結合所形成之胜肽超分子水膠。我們進一步透過顯微鏡和各種光譜儀來探討這三者之間的作用力。緊密纏繞的胜肽纖維網的形成說明了機械穩定性的增加是成功的,包含金與纖維的聯結和鈣離子引起的聚集現象,這兩種機制都被證實。而在熱或者是溶劑腐蝕的環境中依然保有其穩定性。這樣經過機械穩定性提升的胜肽超分子水膠使得他們適合在作為藥物載體和細胞骨架的應用上。

he combination of nanomaterials and biomaterials is recently a freshly explored area of hybrid materials that deals with the integration for improving or developing upon whose characteristics they provide originally respectively. Novel nanoparticle-biomolecule conjugates which are bioinspired from nature such as oligonucleotides and peptide offer more possibility in application to invigorate new science in biomedical fields. In this thesis, we demonstrate two kinds of nanoparticle-biomolecule conjugate which is used in multifunctional drug delivery platform, magnetic-triggered wound dressing, and antibacterial wound dressing.
Development of carriers for cancer therapy has engaged a lot of attentions for many researchers; superparamagnetic iron oxide nanoparticles (SPIONs) and their derivatives have been widely investigated in numerous medical applications. We established, a core-shell Fe3O4@Au nanoparticles incorporating with doxorubicin (DOX)-loaded double strand DNA (dsDNA) was used a drug carrier proceeding co-precipitation synthesis and gold-thiol binding. We modulate different treated time under alternating magnetic field (AMF) to control the release behavior. The energy produced by hyperthermia can easily achieve the temperature of dsDNA dehybridization. Compared to conventional diffusion process, the magnetic-triggered delivery system facilitated the release performance prominently in a short time. Also, we elongate the DNA sequences with aptamer as the specific targeting for accurately chemotherapy onto the cancer cells instead of normal cells. Surely, good biocompatibility and low cytotoxicity was exhibited for our carriers. Furthermore, we try to analyze the size effect of various thickness of gold nanoshell on several properties; the shield effect and surface area would lead to difference in the performance for cancer therapy. As results, our drug-capsulated carriers have been proved to eliminate cancer cell under high frequency magnetic field (HFMF) .With both effects of chemotherapy and hyperthermia, complementing specific targeting ability, lower minimum amount of drug that has to be used was predicted, which means side effects could be reduced effectively.
Hydrogels have been widely used in our daily life in a variety of forms. By definition, hydrogels are three-dimensional (3-D) network made up of cross-linked polymer chains. In recent years there has been a considerable interest in developing new types of low molecular weight hydrogels (supramolecular hydrogels) which are thermally reversible and have great potential in a variety of applications such as tissue engineering, chemical sensing and drug delivery. Hence, we have developed Fe¬3O4 nanoparticles-incorporated supramolecular hydrogels as wound dressings. This nanocomposite was biocompatible and sensitive to external stimuli, which can be used as a novel biomaterial for drug delivery with superior response and feasibility to be controlled. The unique supramolecular hydrogelators composed of 2-Naphthylacetic acid (Nap) and diphenylalanine peptides (FF) were able to self-assemble together and form fibrous networks. Also, the gelation property of the Nap-FF hydrogelator can be enhanced by addition of Fe3O4 nanoparticles. Treatment of AMF resulted in the heating within the nanocomposites leading to accelerated collapse and squeezing out large amounts of imbibed drug. Furthermore, the cytotoxicity test against HeLa cell line supported that not only their outstanding biocompatibility were performed when used as solid wound dressings but the DOX molecules released from the nanocomposites by magnetic stimulation can effectively kill the cancer cells. Based on the results, the biomaterials, Nap-FF-Fe3O4 hydrogels, are promising materials for wound dressings and drugs in the hydrogels can be used in a more effective way with the assistance of the external magnetic field.
In addition to drug delivery, another Nap protected Phe-Phe-Cys (Nap-FFC) peptide was used to design supramolecular hydrogel as antibacterial wound dressing. The Nap-FFC short peptides produced stable and transparent silver nanoparticle-based hydrogels (AgNPs@Nap-FFC) wherein the self-assembled Nap-FFC nanofibers acted as scaffolds for the mineralization of silver nanoparticles (AgNPs) and stabilizer of synthesized AgNPs. The AgNPs@Nap-FFC nanocomposites showed excellent monodispersity, long term stability, and functional flexibility in comparison to other AgNPs based nanocomposites. The AgNPs@Nap-FFC exhibited strong inhibition against both Gram-positive (Methicillin-resistant Staphylococcus aureus) and Gram-negative (Acinetobacter baumannii) bacteria and, most importantly they showed favorable biocompatibility towards HeLa cells and B6F10 skin cells. Hence, this study implies that AgNPs@Nap-FFC nanocomposites can easily be prepared in a cost-effective manner and can be used effectively for future antibacterial wound dressings.
However, the presence of organic building blocks in peptide-based hydrogels often results in low mechanical stability. To expand their practical use and range of applications, it is necessary to develop the tool kit available to prepare bioinspired, peptide-based supramolecular hydrogels with improved mechanical stability. Thus, we present an innovative electrostatic cross-linking approach in which Nap-FFC oligopeptides are combined with gold nanoparticles (AuNPs) and calcium ions (Ca2+) to produce peptide-based supramolecular hydrogels. We further investigate the interactions among Nap-FFC, AuNPs and Ca2+ by microscopy and several spectrophotometry. Two mechanisms successfully enhanced the mechanical stability through the formation of a densely entangled fibrous network of peptide multimers that is attributed to the AuNP linkage and Ca2+-induced agglomeration. The enhanced stability of the hydrogel under various conditions of thermal and solvent erosion was also revealed. Such peptide-based supramolecular hydrogels with significantly improved mechanical stability make them well suited to use as a drug carrier in hydrogel dressings and as extracellular materials (ECMs) for tissue engineering.

Acknowledgment ii
Abstract in Chinese iv
Abstract in English vii
Contents xi
List of Tables xv
List of Figures xvii
Chapter 1: Overview 1
1.1 Nanoparticle-Biomolecule Conjugates for Biomedical Applications 1
Chapter 2: Double Strand DNA-Conjugated Magnetic Fe3O4@Au Core-Shell Nanoparticles for a Tunable Drug Delivery 3
2.1 Introduction 3
2.1.1 Cancer Therapy and Drug Delivery System 3
2.1.2 Applications of Fe3O4 Nanoparticles in Biomedicine 6
2.1.3 Applications of AuNPs in Biomedicine 11
2.2 Materials and Methods 13
2.3 Results and Discussions 16
2.3.1 Synthesis and Characterization of Fe3O4@Au Nanoparticles 16
2.3.2 Construction of Doxorubicin-Loaded dsDNA-Conjugated Fe3O4@Au Nanoparticles 19
2.3.3 Drug Release from dsDNA-Conjugated Magnetic Fe3O4@Au Nanoparticles 22
2.4 Summary 24
Chapter 3: Aptamer Based Cancer Cell Targeting and Magnetically Controlled Release Using Various Sizes of Double Strand DNA-Conjugated Magnetic Fe3O4@Au Core-Shell Nanoparticles 57
3.1 Introduction 57
3.1.1 Size-Effect on Physical, Chemical and Biomedical Properties 57
3.1.2 Target Technique for Drug Delivery and Therapy 60
3.2 Materials and Methods 62
3.3 Results and Discussions 66
3.3.1 Synthesis and Characterization of Various Size of Fe3O4@Au Nanoparticles 66
3.3.2 Analysis on Drug Loading Capacity 68
3.3.3 Size-Effect on Drug Delivery Behavior 72
3.3.4 In vitro Controlled Release 74
3.4 Summary 77
Chapter 4: A Novel Biomaterial Fabricated by Iron Oxide Nanoparticle -Incorporated Supramolecular Hydrogel for Magnetically -Triggered Drug Release 108
4.1 Introduction 108
4.1.1 Supramolecular Hydrogels 108
4.1.2 Diphenylalanine–based Supramolecular Hydrogels 110
4.1.3 Release Mechanism from Hydrogel Matrices 112
4.1.4 Magnetic Hydrogels 113
4.2 Materials and Methods 116
4.3 Results and Discussions 121
4.3.1 Synthesis and Characterization of Nap-FF Hydrogel and Nap-FF-Fe3O4 Hydrogel 121
4.3.2 Fabrication of Drug-Loaded Nap-FF-Fe3O4 Hydrogel 123
4.3.3 Drug Release from Drug-loaded Nap-FF-Fe3O4 Hydrogel 125
4.3.4 Cell Culture-Cytotoxicity of Nap-FF-Fe3O4 Hydrogels 130
4.4 Summary 131
Chapter 5: A Biocompatible Supramolecular Hydrogel Embedded with Silver Nanoparticle for Antibacterial Wound Dressings 176
5.1 Introduction 176
5.1.1 Hydrogel-Nanoparticle Nanocomposites 176
5.1.2 Antimicrobials Based on Silver Nanoparticles Hydrogels 177
5.2 Materials and Methods 180
5.3 Results and Discussions 183
5.3.1 Characterization of AgNPs@Nap-FFC Peptides 183
5.3.2 Antibacterial Activity Test 187
5.3.2 Biocompatibility of AgNPs@Nap-FFC Nanocomposites 188
5.4 Summary 189
Chapter 6: New Synthesis Route of Hydrogel through A Bioinspired Supramolecular Approach: Gelation, Binding Interaction and in Vitro Dressing 216
6.1 Introduction 216
6.1.1 Interactions Cross-Linked Approaches of Hydrogels 216
6.1.2 Incorporation of Metal into Hydrogel Frameworks 219
6.1.3 Importance of Calcium in Biomedical Applications 220
6.2 Materials and Methods 221
6.3 Results and Discussions 224
6.3.1 Gelation Properties of the Nap-FFC-AuNPs Hydrogel 224
6.3.2 Interaction Investigation of Nap-FFC, AuNPs and Calcium Ions 227
6.3.3 Stability of the Prepared Hydrogel under Various Temperature, pH, and sonication 235
6.3.4 Cytotoxicity Performance and Drug Encapsulation 237
6.4 Summary 238
Chapter 7: Conclusion 267
References: 272

Chapter 2
[1]. Lee, D. E.; Koo, H.; Sun, I. C.; Ryu, J. H.; Kim, K.; Kwon, I. C. Chem. Soc. Rev. 2012, 41, 2656–2672.
[2]. Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler J. J. Control. Release 2015, 200, 138–157.
[3]. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nat. Nanotechnol. 2007, 2, 751–760.
[4]. Allen, T. M.; Pieter, R. C. Science 2004, 303, 1818–1822.
[5]. Deckert, J.; Park, P. U.; Chicklas, S.; Yi, Y.; Li, M.; Lai, K. C.; Mayo, M. F.; Carrigan, C. N.; Erickson, H. K.; Pinkas, J.; Lutz, R. J.; Chittenden, T.; Lambert, J. M. Blood 2013, 122, 3500–3510.
[6]. Park, J.; Fong, P. M.; Lu, J.; Russell, K. S.; Booth, C. J.; Saltzman, W. M.; Fahmy, T. M. Nanomedicine: NBM 2009, 5, 410–418.
[7]. Wiseman, G. A.; White, C. A.; Sparks, R. B.; Erwin, W. D.; Podoloff, D. A.; Lamonica, D.; Bartlett, N. L.; Parker, J. A.; Dunn, W. L.; Spies, S. M.; Belanger, R.; Witzig, T. E.; Leigh, B. R. Crit. Rev. Oncol. Hemat. 2001, 39, 181–194.
[8]. Brown, S. D.; Nativo, P.; Smith, J. A.; Stirling, D.; Edwards, P. R.; Venugopal, B.; Flint, D. J.; Plumb, J. A.; Graham, D.; Wheate, N. J. J. Am. Chem. Soc. 2010, 132, 4678–4684.
[9]. Veiseh, O.; Gunn, J. W.; Zhang, M. Adv. Drug Deliv. Rev. 2010, 62, 284–304.
[10]. Kost, J.; Wolfrum, J.; Langer, R. J. Biomed. Mater. Res. 1987, 21, 1367–1373.
[11]. Epstein-Barash, H.; Shichor, I.; Kwon, A. H.; Hall, S.; Lawlor, M. W.; Langer, R.; Kohane, D. S. Proc. Natl. Acad. Sci. USA 2009, 106, 7125–7130.
[12]. Timko, B. P.; Dvir, T.; Kohane, D. S. Adv. Mater. 2010, 22, 4925–4943.
[13]. Hillery, A. M.; Lloyd, A. W.; Swarbrick, J. Drug delivery and targeting: for pharmacists and pharmaceutical scientist; Taylor & Francis: London, 2001.
[14]. Timko, B. P.; Whitehead, K.; Gao, W.; Kohane, D. S.; Farokhzad, O.; Anderson, D.; Langer, R. Annu. Rev. Mater. Res. 2011, 41, 1–20.
[15]. Felice, B.; Prabhakaran, M. P.; Rodríguez, A. B.; Ramakrishna, S. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 178–195.
[16]. Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M. R.; Santamaría, J. Nano Today 2007, 2, 22–32.
[17]. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. J. Phys. D Appl. Phys. 2003, 36, R167–R181.
[18]. Gil, S.; Mano, J. F. Biomater. Sci. 2014, 2, 812–818.
[19]. Joshi, H. M. J. Nanopart. Res. 2013, 15, 1–19.
[20]. Jun, Y.; Lee, J. H.; Cheon, J. Angew. Chem. Int. Edit. 2008, 47, 5122–5135.
[21]. Lee, J. H.; Huh, Y. M.; Jun, Y.; Seo, J.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S; Cheon, J. Nat. Med. 2007, 13, 95–99.
[22]. Duan, H.; Kuang, M.; Wang, X.; Wang, Y. A.; Mao, H.; Nie, S. J. Phys. Chem. C 2008, 112, 8127–8131.
[23]. Sun, C.; Veiseh, O.; Gunn, J.; Fang, C.; Hansen, S.; Lee, D.; Sze, R.; Ellenbogen, R. G.; Olsen, J.; Zhang, M. Small 2008, 4, 372–379.
[24]. Singh, A.; Sahoo, S. K. Drug Discov. Today 2014, 19, 474–481.
[25]. Yoo, D.; Lee, J. H.; Shin, T. H.; Cheon, J. Accounts Chem. Res. 2011, 44, 863–874.
[26]. Ondeck, C. L.; Habib, A. H.; Ohodnicki, P.; Miller, K.; Sawyer, C. A.; Chaudhary, P.; McHenry, M. E. J. Appl. Phys. 2009, 105, 07B324.
[27]. Derfus, A. M.; von Maltzahn, G.; Harris, T. J.; Duza, T.; Vecchio, K. S.; Ruoslahti, E.; Bhatia, S. N. Adv. Mater. 2007, 19, 3932–3936.
[28]. Bae, K. H.; Park, M.; Do, M. J.; Lee, N.; Ryu, J. H.; Kim, G. W.; Kim, C. G.; Park, T. G.; Hyeon, T. ACS Nano 2012, 6, 5266–5273.
[29]. Creixell, M.; Bohórquez, A. C.; Torres-Lugo, M.; Rinaldi, C. ACS Nano 2011, 5, 7124–7129.
[30]. Chouly, C.; Pouliquen, D.; Lucet, I.; Jeune, J. J.; Jallet, P. J. Microencapsul. 1996, 13, 245–255.
[31]. Storm, G.; Belliot, S. O.; Daemen, T.; Lasic, D. D. Adv. Drug Deliv. Rev. 1995, 17, 31–48.
[32]. Kohler, N.; Sun, C.; Wang, J.; Zhang, M. Q. Langmuir 2005, 21, 8858–8864.
[33]. Kohler, N.; Sun, C.; Fichtenholtz, A.; Gunn, J.; Fang, C.; Zhang, M. Q. Small 2006, 2, 785–792.
[34]. Ito, A.; Kuga, Y.; Honda, H.; Kikkawa, H.; Horiuchi, A.; Watanabe, Y.; Kobayashi, T. Cancer Lett. 2004, 212, 167–175.
[35]. Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 12387–12391.
[36]. Krotz, F.; de Wit, C.; Sohn, H. Y.; Zahler, S.; Gloe, T.; Pohl, U.; Plank, C. Mol. Ther. 2003, 7, 700–710.
[37]. Dobson, J. Gene Ther. 2006, 13, 283–287.
[38]. Pan, B. F.; Cui, D. X.; Sheng, Y.; Ozkan, C. G.; Gao, F.; He, R.; Li, Q.; Xu, P.; Huang, T. Cancer Res. 2007, 67, 8156–8163.
[39]. Wang, C.; Xu, H.; Liang, C.; Liu, Y.; Li, Z.; Yang, G.; Chang, L.; Li, Y.; Liu, Z. ACS Nano 2013, 7, 6782–6795.
[40]. Reuveni, T.; Motiei, M.; Romman, Z.; Popovtzer, A.; Popovtzer, R. Int. J. Nanomedicine 2011, 6, 2859–2864.
[41]. Chatterjee, D. K.; Diagaradjane, P.; Krishnan, S. Ther. Deliv. 2011, 2, 1001–1014.
[42]. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Nano Lett. 2007, 7, 1929–1934.
[43]. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Small 2005, 1, 325–327.
[44]. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293–346.
[45]. Ghosh, P.; Han, H.; De, M.; Kim, C. K.; Rotello, V. M. Adv. Drug Deliv. Rev. 2008, 60, 1307–1315.
[46]. https://en.wikipedia.org/wiki/CT_scan
[47]. Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M. Br. J. Radiol. 2006, 79, 248–253.
[48]. Xi, D.; Dong, S.; Meng, X.; Lu, Q.; Meng, L.; Ye, J. RSC Adv. 2012, 2, 12515–12524.
[49]. Jaque, D., Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Soléa, J. Nanoscale 2014, 6, 9494–9530.
[50]. Terentyuk, G. S.; Maslyakova, G. N.; Suleymanova, L. V.; Khlebtsov, N. G.; Khlebtsov, B. N.; Akchurin, G. G.; Maksimova, I. L.; Tuchin, V. V. J. Biomed. Opt. 2009, 14, 021016–021016.
[51]. Hirsch, L. R.; Gobin, A. M.; Lowery, A. R.; Tam, F.; Drezek, R. A.; Halas, N. J.; West, J. L. Ann. Biomed. Eng. 2006, 34, 15–22.
[52]. Steplewski, Ze.; Lubeck, M. D.; Koprowski, H. Science 1983, 221, 865–867.
[53]. Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. J. Am. Chem. Soc. 2004, 126, 273–279.
[54]. Zhou, X.; Xu, W.; Wang, Y.; Kuang, Q.; Shi, Y.; Zhong, L.; Zhang, Q. J. Phys. Chem. C 2010, 114, 19607–19613.
[55]. Zeman, S. M.; Phillips, D. M.; Crothers, D. M. Proc. Natl. Acad. Sci. USA 1998, 95, 11561–11565.
[56]. Agudelo, D.; Bourassa, P.; Bérubé, G.; Tajmir-Riahi, H. A. Int. J. Biol. Macromol. 2014, 66, 144–150.
[57]. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Nano Lett. 2006, 6, 662–668.
[58]. Alexander, C. M.; Maye, M. M.; Dabrowiak, J. C. Chem. Commun. 2011, 47, 3418–3420.
[59]. Martinez-Boubeta, C.; Balcells, L.; Cristofol, R.; Sanfeliu, C.; Rodriguez, E.; Weissleder, R.; Lope-Piedrafita, S.; Simeonidis, K.; Angelakeris, M.; Sandiumenge, F.; Calleja, A.; Casas, L.; Monty, C.; Martinez, B. Nanomed. Nanotech. Biol. Med. 2010, 6, 362–370.
Chapter 3
[1]. Samim, M.; Kaushik, N. K.; Maitra. A. Bull. Mater. Sci. 2007, 30, 535–540.
[2]. Feldheim, D. L.; Foss, C. A. Metal nanoparticles synthesis, characterization, and applications; Marcel Dekker, New York, 2002.
[3]. Zhao, W. W.; Tian, C. Y.; Xu, J. J.; Chen, H. Y. Chem. Commun. 2012, 48, 895–897.
[4]. Han, B. C.; Miranda, C. R.; Ceder, G. Phys. Rev. B 2008, 77, 075410.
[5]. Du, L.; Furube, A.; Hara, K.; Katoh, R.; Tachiya, M. J. Phys Chem. C 2010, 114, 8135–8143.
[6]. Ghosh, S. K.; Pal, T. Chem. Rev., 2007, 107, 4797–4862.
[7]. Zheng, J.; Zhang C. W.; Dickson, R. M. Phys. Rev. Lett., 2004, 93, 077402.
[8]. Pushkareva, V. V.; An, K.; Alayoglu, S.; Beaumont, S. K.; Somorjai, G. A. J. Catal. 2012, 292, 64–72.
[9]. Uchic, M. D.; Dimiduk, D. M.; Florando, J. N.; Nix, W. D. Science, 2004, 305, 986–989.
[10]. Lee, C. J.; Huang, J. C.; Nieh, T. G. Appl. Phys. Lett. 2007, 91, 161913.
[11]. Katoh, R.; Huijser, A.; Hara, K.; Savenije, T. J.; Siebbeles, L. D. A. J. Phys. Chem. C 2007, 111, 10741–10746.
[12]. Price, N. C.; Stevens, L. Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins, 3rd ed.; Oxford University Press, New York, 1999, 347–355.
[13]. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature, 1996, 382, 607–609.
[14]. H. E. Schoemaker, D. Mink and M. G. Wubbolts, Science, 2003, 299, 1694–1697.
[15]. Wu, C. C.; Ko, F. H.; Yang, Y. S.; Hsia, D. L.; Lee, B. S.; Su, T. S. Biosens. Bioelectron. 2009, 25, 820–825.
[16]. De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater., 2008, 20, 4225–4241.
[17]. Bunz, U. H. F.; Rotello, V. M. Angew. Chem. Int. Ed., 2010, 49, 3268–3279.
[18]. Yuan, Y.; Liu, C.; Qian, J.; Wang, J.; Zhang, Y. Biomaterials, 2010, 31, 730–740
[19]. Gan, Q.; Dai, D.l Yuan, Y.; Qian, J.; Sha, S.; Shi, J.; Liu, C. Biomed. Microdevices 2012, 14, 259–270.
[20]. Sumio Chono, S. Tanino, T.; Seki, T.; Morimoto, K. J. Pharm. Pharmacol. 2007, 59, 75–80.
[21]. Wu, C. S.; Lee, C. C.; Wu, C. T.; Yang, Y. S.; Ko, F. H. Chem. Commun. 2011, 47, 7446–7448.
[22]. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nat. Nanotechnol. 2008, 3, 145–150.
[23]. Jun, Y.; Huh, Y. M.; Choi, J.; Lee, J. H.; Song, H. T.; Kim, S.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 5732–5733.
[24]. Sonavane, G.; Tomoda, K.; Makino, K. Colloids Surf. B Biointerfaces 2008, 66, 274–280.
[25]. Hu,Y.; Xie, J.; Tong, Y. W.; Wang, C. H. J. Control. Release 2007, 118, 7–17.
[26]. Kang, Y.; Li, D.; Kalams, S. A.; Eid, J. E. Biomed. Microdevices 2008, 10, 243–249.
[27]. Nam, K. H.; Yong, W.; Harvat, T.; Adewola, A.; Wang, S.; Oberholzer, J.; Eddington, D. T. Biomed. Microdevices 2010, 12, 865–874.
[28]. Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. J. Phys. Condens. Matter 2006, 18, S2919–S2934.
[29]. Luo, Y. L.; Shiao, Y. S.; Huang, Y. F. ACS Nano 2011, 5, 7796–7804.
[30]. Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Pedro Hernandez, P.; Govorov, A. O. Nano Lett. 2009, 9, 1139 –1146.
[31]. Guardia, P.; Di Corato, R.; Lartigue, L.; Wilhelm, C.; Espinosa, A.; Garcia-Hernandez, M.; Gazeau, F.; Manna, L.; Pellegrino, T. ACS Nano 2012, 6, 3080–3091.
[32]. Hu, S. H.; Chen, S. Y.; Liu, D. M.; Hsiao, C. S. Adv. Mater. 2008, 20, 2690–2695.
[33]. Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O. C. Adv. Drug Deliv. Rev. 2014, 66, 2–25.
[34]. Wang, Y.; Gu, H. Adv. Mater. 2015, 27, 576–585.
[35]. “https://en.wikipedia.org/wiki/Antibody”
[36]. Köhler, G.; Milstein, C. Nature 1975, 256, 495–497.
[37]. Steplewski, Z.; Lubeck, M. D.; Koprowski, H. Science 1983, 221, 865–867.
[38]. Adams, G. P.; Weiner, L. M. Nat. Biotechnol. 2005, 23, 1147–1157.
[39]. “https://en.wikipedia.org/wiki/Aptamer”
[40]. Mairal, T.; Özalp, V. C.; Sánchez, P. L.; Mir, M.; Katakis, I.; O’Sullivan, C. K. Anal. Bioanal. Chem. 2008, 390, 989–1007.
[41]. Tuerk, C.; Gold, L. Science 1990, 249, 505–510.
[42]. Ellington, A. D.; Szostak. J. W. Nature 1990, 346, 818–822.
[43]. Xiang, Y.; Qian, X.; Jiang, B.; Chai, Y.; Yuan, R. Chem. Commun. 2011, 47, 4733–4735.
[44]. Chen, J. W.; Liu, X. P.; Feng, K. J.; Liang, Y.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Biosens. Bioelectron. 2008, 24, 66–71.
[45]. Chen, J. W.; Jiang, J. H.; Gao, X.; Liu G.; Shen, G. L.; Yu, R. Q. Chem. –Euro. J. 2008, 14, 8374–8382.
[46]. Jayasena, S. D. Clin. Chem. 1999, 45, 1628–1650.
[47]. Ireson, C. R.; Kelland, L. R. Mol. Cancer Ther. 2006, 5, 2957–2962.
[48]. Kim, D.; Jeong, Y. Y.; Jon. S. ACS Nano 2010, 4, 3689-3696.
[49]. Sjøgren, C. E.; Briley-Sæbø, K.; Hanson, M.; Johanssonet C. Magn. Reson. Med. 1994, 31, 268–272.
[50]. Lyon, J. L.; Fleming D. A.; Stone, M. B.; Schiffer, P.; Williams, M. E. Nano Lett. 2004, 4, 719–723.
[51]. Agudelo, D.; Bourassa, P.; Bérubé, G.; Tajmir-Riahi, H. A. Int. J. Biol. Macromol. 2014, 66, 144–150.
[52]. Sonavane, G.; Tomoda, K.; Makino, K. Colloids Surf. B Biointerfaces 2008, 66, 274–280.
[53]. Putnam, D.; Zelikin, A. N.; Izumrudov, V. A.; Langer, R. Biomaterials 2003, 24, 4425–4433.
[54]. Yoo, H. S.; Lee, K. H.; Oh, J. E.; Parket T. G. J. Control. Release 2000, 68, 419–431. Ther. Deliv. 2011, 2, 1001–1014.
[55]. Storm, F. K. Radiol. Clin. N. Am. 1989, 27, 621-627.
[56]. Kishimoto, M.; Yanagihara, H.; Kita, E. IEEE Trans. Mag. 2013, 49, 4756–4760.
[57]. Hua, X.; Zhou, Z.; Yuan, L; Liu, S. Anal. Chim. Acta 2013, 788, 135–140.
Chapter 4
[1]. Seliktar, D. Science 2012, 336, 1124–1128.
[2]. Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821–836.
[3]. Jung, H.; Park, J. S.; Yeom, J.; Selvapalam, N.; Park, K. M.; Oh, K.; Yang, Y. A.; Park, K. H.; Hahn, S. K.; Kim, K. Biomacromolecules 2014, 15, 707–714.
[4]. Kiyonaka, S.; Sada, K.; Yoshimura, I.; Shinkai, S.; Kato, N.; Hamachi, I. Nat. Mater. 2004, 3, 58–64.
[5]. Yoshimura, I.; Miyahara, Y.; Kasagi, N.; Yamane, H.; Ojida, A.; Hamachi, I. J. Am. Chem. Soc. 2004, 126, 12204–12205.
[6]. Li, J. NPG Asia Mater. 2010, 2, 112–118.
[7]. Yang, Z.; Liang, G.; Ma, M.; Gao, Y.; Xu, B. J. Mater. Chem. 2007, 17, 850–854.
[8]. MacKintoxsh, F. C.; Kas, J.; Janmey, P. A. Phy. Rev. Lett. 1995, 75, 4425-4428.
[9]. Marx, G. Thromb Haemost, 1998, 59, 500-503.
[10]. Smidsord, O.; Skjak-Braek, G. Trends Biotechnol. 1990, 8, 71-78.
[11]. Coger, R.; Toner, M.; Moghe, P.; Ezzell, R.; Yarmush, M. L. Tissue Eng. 1997, 3, 375-390.
[12]. Semler, E. J.; Moghe, P. V. Biotechnol. Bioeng. 2001, 75, 510-520.
[13]. Semler, E. J.; Ranucci, C. S.; and Moghe, P. V. Biotechnol. Bioeng. 2000, 69, 359-369.
[14]. Nichol, J. W.; Koshy, S. T.; Bae, H.; Hwang, C. M.; Yamanlar, S.; Khademhosseini, A. Biomaterials 2010, 31, 5536-5534.
[15]. Nguyen, K. T.; West, J. L. Biomaterials 2002, 23, 4307-4314.
[16]. Ikeda, M.; Shimizu, Y.; Matsumoto, S.; Komatsu, H.; Tamaru, S. I.; Takigawa, T.; Hamachi, I. Macromol. Biosci. 2008, 8, 1019–1025.
[17]. Godeau, G.; Bernard, J.; Staedel, C.; Barthélémy, P. Chem. Commun. 2009, 5127–5129.
[18]. Qin, L.; Duan, P.; Xie, F.; Zhang, L.; Liu, M. Chem. Commun. 2013, 49, 10823–10825.
[19]. Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684–1688.
[20]. Silva, G. A.; Czeisler, C.; Niece, K. L.; Beniash, E.; Harrington, D. A.; Kessler, J. A.; Stupp, S. I. Science 2004, 303, pp. 1352–1355.
[21]. Holmes, T. C.; de Lacalle, S.; Su, X.; Liu, G.; Rich, A.; Zhang, S. Proc. Natl. Acad. Sci. USA 2000, 97, 6728–6733.
[22]. Yang, Z.; Xu, B. Adv. Mater. 2006, 18, 3043–3046.
[23]. Schneider, J. P.; Pochan, D. J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. J. Am. Chem. Soc. 2002, 124, 15030–15037.
[24]. Haines-Butterick, L.; Rajagopal, K.; Branco, M.; Salick, D.; Rughani, R.; Pilarz, M.; Lamm, M. S.; Pochan, D. J.; Schneider, J. P. Proc. Natl. Acad. Sci. USA 2007, 104, 7791–7796.
[25]. Jayawarna, V.; Ali1, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.; Gough, J. E.; Ulijn, R. V. Adv. Mater. 2006, 18, 611–614.
[26]. Gao, Y.; Kuang, Y.; Guo, Z. F.; Guo, Z.; Krauss, I. J.; Xu, B. J. Am. Chem. Soc. 2009, 131, 13576–13577.
[27]. Reches, M.; Gazit, E. Science, 2003, 300, 625–627.
[28]. Yan, X.; Zhu, P.; Li, J. Chem. Soc. Rev. 2010, 39, 1877–1890.
[29]. Ryan, D. M.; Nilsson, B. L. Polym. Chem. 2012, 3, 18–33.
[30]. Mahler, A.; Reches, M.; Rechter, M.; Cohen, S.; Gazit, E. Adv. Mater. 2006, 18, 1365–1370.
[31]. Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. Adv. Mater. 2008, 20, 37–41.
[32]. Zhang, Y.; Kuang, Y.; Gao, Y.; Xu, B. Langmuir 2011, 27, 529–537.
[33]. Yang, Z.; Liang, G.; Xu, B. Chem. Commun. 738–740.
[34]. Jayawarna, V.; Smith, A.; Gough, J. E.; Ulijn, R. V. Biochem. Soc. Trans. 2007, 35, 535–537.
[35]. Liang, G.; Yang, Z.; Zhang, R.; Li, L.; Fan, Y.; Kuang, Y.; Gao, Y.; Wang, T.; Lu, W. W.; Xu, B. Langmuir 2009, 25, 8419–8422.
[36]. Hamidi, M.; Azadi, A.; Rafiei, P. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649.
[37]. Caldorera-Moore, M.; Peppas, N. A. Adv. Drug Deliv. Rev. 2009, 61, 1391–1401.
[38]. Shin, M. K.; Kim, S. I.; Kim, S. J.; Park, S. Y.; Hyun, Y. H; Lee, Y.; Lee, K. E.; Han, S. S.; Jang, D. P.; Kim, Y. B.; Cho, Z. H.; So, I.; Spinks, G. M. Langmuir 2008, 24, 12107–12111.
[39]. Beaune G.; Ménager, C. J. Colloid Interface Sci. 2010, 343, 396–399.
[40]. Liang, Y. Y.; Zhang, L. M.; Jiang, W.; Li, W. Chemphyschem 2007, 8, 2367–2372.
[41]. Li, Y; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T. J.; Xu, F. Adv. Funct. Mater. 2013, 23, 660–672.
[42]. Burke, N. A. D.; Stöver, H. D. H.; Dawson, F. P. Chem. Mater. 2002, 14, 4752–4761.
[43]. Vashist A.; Ahmad, S. Orient. J. Chem. 2013, 29, 861–870.
[44]. Xu, F.; Wu, C. A. M.; Rengarajan, V.; Finley, T. D.; Keles, H. O.; Sung, Y.; Li, B.; Gurkan, U. A.; Demirci, U. Adv. Mater. 2011, 23, 4254–4260.
[45]. Hernández, R.; Sacristán, J.; Asín, L.; Torres, T. E.; Ibarra, M. R.; Goya, G. F.; Mijangos, C. J. Phys. Chem. B 2010, 114, 12002–12007.
[46]. Satarkar, N. S.; Hilt, J. Z. J. Control. Release 2008, 130, 246–251.
[47]. Zhao, X.; Kim, J.; Cezar, C. A.; Huebsch, N.; Lee, K.; Bouhadir, K.; Mooney, D. J. Proc. Natl. Acad. Sci. USA 2011, 108, 67–72.
[48]. Bock, N.; Riminucci, A.; Dionigi, ; Russo, A.; Tampieri, A.; Landi, E.; Goranov, V. A.; Marcacci, M.; Dediu, V. Acta Biomater. 2010, 6, 786–796.
[49]. Zeng, X. B.; Hu, H.; Xie, L. Q.; Lan, F.; Jiang, W.; Wu, Y.; Gu, Z. W. Int. J. Nanomedicine 2012, 7, 3365–3378.
[50]. Skaat, H.; Ziv-Polat, O.; Shahar, A.; Last, D.; Mardor, Y.; Margel, S. Adv. Healthc. Mater. 2012, 1, 168–171.
[51]. Sapir, Y.; Cohen, S.; Friedman, G.; Polyak, B. Biomaterials 2012, 33, 4100–4109.
[52]. Kuang, Y.; Yuan, D.; Zhang, Y.; Kao, A.; Du, X.; Xu, B. RSC Adv. 2013, 3, 7704–7707.
[53]. Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V. Mol. Pharm. 2005, 2, 194–205.
[54]. Shi, J.; Gao, Y.; Zhang, Y.; Pan, Y.; Xu, B. Langmuir 2011, 27, 14425–14431.
[55]. Durkin, A. J.; Jaikumar, S.; Ramanujam, N. Appl. Optics 1994, 33, 414–423.
[56]. Dai, L.; Liu, X.; Wang, X.; Tong, Z. Acta Polym. Sin. 2010, 1, 102–106.
[57]. Liu, H.; Maruyama, H.; Masuda, T.; Arai, F. 2013 International Symposium on Micro-Nano Mechatronics and Human Science (MHS), 1–2, 2013.
[58]. Lee, H.; Kim, S.; Choi, B. H.; Park, M. T.; Lee, J.; Jeong, S. Y.; Choi, E. K.; Lim, B. U.; Kim, C.; Park, H. J. Int. J. Hyperthermia 2011, 27, 698–707.
[59]. Van Elk, M.; Deckers, R.; Oerlemans, C.; Vermonden, T.; Hennink, E. Biomacromolecules 2014, 15, 1002–1009.
[60]. Li, J. NPG Asia Mater. 2010, 2, 112–118.
[61]. Kumar C. S. S. R.; Mohammad, F. Adv. Drug Deliv. Rev. 2011, 63, 789–808.
[62]. Yan, K.; Li, P.; Zhu, H.; Zhou, Y.; Ding, J.; Shen, J.; Li, Z.; Xu, Z.; Chu, P. K. RSC Adv. 2013, 3, 10598–10618.
[63]. Kuang Y.; Xu, B. Angew. Chem. Int. Ed. 2013, 52, 6944–6948.
[64]. Hsu, P. P.; Sabatini, D. M. Cell, 2008, 134, 703–707.
[65]. Yang, Z.; Liang, G.; Guo, Z.; Guo, Z.; Xu. B. Angew. Chem. Int. Ed. 2007, 119, 8364–8367.
Chapter 5
[1]. Schexnailder, P.; Schmidt, G. Colloid Polym. Sci. 2009, 287, 1–11.
[2]. Thomas, V.; Yallapu, M. M.; Sreedhar, B.; Bajpai, S. K. J. Colloid Interface Sci., 2007, 315, 389–395.
[3]. Satarkar, N. S.; Hilt, J. Z. J. Control. Release 2008, 130, 246–251.
[4]. Sahiner, N.; Butun, S.; Ozay, O.; Dibek, B. J. Colloid Interface Sci. 2012, 373, 122–128.
[5]. Das, D.; Kar, T.; Das, P. K. Soft Matter 2012, 8, 2348–2365.
[6]. Nanda, J.; Adhikari, B.; Basak, S.; Banerjee, A. J. Phys. Chem. B 2012, 116, 12235−12244.
[7]. Yang, Z.; Gu, H.; Du, J.; Gao, J.; Zhang, B.; Zhang, X.; Xu, B. Tetrahedron, 2007, 63, 7349–7357.
[8]. Guo, M.; Jiang, M.; Pispas, S.; Yu, W.; Zhou, C. Macromol. 2008, 41, 9744–9749.
[9]. Wang, Y.; Newell, B. B.; Irudayaraj, J. J. Biomed. Nanotechnol. 2012, 8, 751–759.
[10]. Haes, A. J.; Duyne, R. P. V. J. Am. Chem. Soc. 2002, 124, 10596–10604.
[11]. Dastjerdi, R.; Montazer, M. Colloids Surf. B Biointerfaces, 2010, 79, 5–18.
[12]. Mohanpuria, P.; Rana, N. K.; Yadav, S. K. J. Nanopart. Res. 2008, 10, 507–517.
[13]. Rai, M.; Yadav, A.; Gade, A. Biotechnol. Adv. 2009, 27, 76–83.
[14]. Wang, G. Q.; Chen, L. X. Chinese Chem. Lett. 2009, 20, 1475–1477.
[15]. Lee, S.; Kim, S.; Choo, J.; Shin, S. Y.; Lee, Y. H.; Choi, H. Y.; Ha, S. H.; Kang, K. H.; Oh, C.H. Anal. Chem. 2007, 79, 916–922.
[16]. Ninganagouda, S.; Rathod, V.; Singh, D.; Hiremath, J.; Singh, A. K.; Mathew, J.; ul-Haq, M. BioMed. Res. Int. 2014, 2014, 753419
[17]. Liu, L.; Liu, J.; Wang, Y.; Yan, X.; Sun, D. D. New J. Chem. 2011, 35, 1418–1423.
[18]. Wang, Y.; Cao, L.; Guan, S.; Shi, G.; Luo, Q.; Miao, L.; Thistlethwaite, I.; Huang, Z.; Xu, J.; Liu, J. J. Mater. Chem. 2012, 22, 2575–2581.
[19]. Agnihotri, S.; Bajaj, G.; Mukherji, S.; Mukherji, S. Nanoscale 2015, 7, 7415–7429.
[20]. Agnihotri, S.; Bajaj, G.; Mukherji, S.; Mukherji, S. RSC Adv. 2014, 4, 3974–3983.
[21]. Zhou, Y.; Kogiso, M.; Asakawa, M.; Dong, S.; Kiyama, R.; Shimizu, T. Adv. Mater. 2009, 21, 1742–1745.
[22]. Chowdhuri, A.; Tripathy, S.; Haldar, C.; Das, B.; Roy S.; Sahu, S. K. RSC Adv. 2015, 5, 21515–21524.
[23]. Chernousova ,S.; Epple, M. Angew. Chem. Int. Ed. 2013, 52, 1636–1653.
[24]. Shome, A.; Duta, S.; Maiti, S.; Das, P. K. Soft Matter 2011,7, 3011–3022.
[25]. Lansdown, A. B. J. Wound Care 2002, 11, 125–130.
[26]. Leaper, D. J. Int. Wound J. 2006, 3, 282–294
[27]. Lv, M.; Su, S.; He, Y. ; Huang, Q.; Hu, W.; Li, D.; Fan, C.; Lee, S. T. Adv. Mater. 2010, 22, 5463–5467.
[28]. Auffan, M.; Rose, J.; Wiesner, M. R.; Bottero, J. Y. Environ. Pollut., 2009, 157, 1127–1133.
[29]. Cheng, Y.; Yin, L.; Lin, S.; Wiesner, M.; Bernhardt, E.; Liu, J. J. Phys. Chem. C, 2011, 115, 4425–4432.
[30]. Mao, Z.; Zhoua, X.; Gao, C. Biomater. Sci., 2013, 1, 896–911.
[31]. Lin, J. J.; Lin, W. C.; Dong, R. X.; Hsu, S. H. Nanotechnology, 2012, 23, 065102.
[32]. Rattanaruengsrikul, V.; Pimpha, N.; Supaphol, P. Macromol. Biosci. 2009, 9, 1004–1015.
[33]. Rattanaruengsrikul, V.; Pimpha, N.; Supaphol, P. J. Appl. Polym. Sci. 2012, 124, 1668–1682.
[34]. Yang, G.; Xie, J. J.; Hong, F.; Cao, Z. J.; Yang, X. X. Carbohyd. Polym. 2012, 87 (1), 839–845.
[35]. Maneerung, T.; Tokura, S.; Rujiravanit, R. Carbohyd. Polym. 2008, 72, 43–51.
[36]. Anh, T. T. H.; Xing, M.; Le, D. H. T.; Sugawara-Narutaki, A.; Fong, E. Nanomedicine 2013, 8, 567–575.
[37]. Galloway, J. M.; Staniland, S. S. J. Mater. Chem. 2012, 22, 12423–12434.
[38]. Zhang, M.; Ye, B. C. Anal. Chem. 2011, 83, 1504–1509.
[39]. Yang, Z.; Xu, B. J. Mater. Chem. 2007, 17, 2385–2393.
[40]. Luo, Z.; Zhang, S. Chem. Soc. Rev. 2012, 41, 4736–4754.
[41]. Kuang, Y.; Gao Y.; Xu, B. Chem. Commun. 2011, 47, 12625–12627.
[42]. Yan, X.; Wang, F.; Zheng, B.; Huang, F. Chem. Soc. Rev. 2012, 41, 6042–6065.
[43]. Miravet, J. F.; Escuder, B. Chem. Commun. 2005, 46, 5796–5798.
[44]. Shome, A.; Dutta, S.; Maiti, S.; Das, P. K. Soft Matter 2011, 7, 3011–3022.
[45]. Li, X.; Zhang, J.; Xu, W.; Jia, H.; Wang, X.; Yang, B.; Zhao, B.; Li, B.; Ozaki, Y. Langmuir 2003, 19, 4285–4290.
[46]. Cevher, E.; Sensoy, D.; Taha, M. A. M.; Araman, A. AAPS PharmSciTech. 2008, 9, 953–965.
[47]. Tripathy, S. K.; Yu, Y. T. Spectrochim. Acta Mol. Biomol. Spectros. 2009, 72, 841–844.
[48]. Ravindran, A.; Chandrasekaran, N.; Mukherjee, A. Curr. Nanosci. 2012, 8, 141–149.
[49]. Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Nano Lett. 2012, 12, 4271–4275.
Chapter 6
[1]. Wichterle, O.; Lim, D. Nature 1960, 185, 117–118.
[2]. Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biomacromolecules 2011, 12, 1387–1408.
[3]. Mahler, A.; Reches, M.; Rechter, M.; Cohen, S.; Gazit, E. Adv. Mater. 2006, 18, 1365−1370.
[4]. Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Eur. J. Pharm. Biopharm. 2000, 50, 27–46.
[5]. Ding, Y.; Li Y.; Qin, M.; Cao, Y.; and Wang, W. Langmuir 2013, 29, 13299−13306.
[6]. Adhikari, B.; Nanda, J.; Banerjee, A. Soft Matter 2011, 7, 9259−9266.
[7]. Janiak, C. Dalton Trans. 2003, 2781–2804.
[8]. Eddaoudi, M.; Kim J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469–472.
[9]. Bush, M. F.; Oomens, J.; Sayklly, R. J.; Williams, E. R. J. Am. Chem. Soc. 2008, 130, 6463–6471.
[10]. Laurencin, D.; Gervais, C.; Wong, A.; Coelho, C.; Mauri, F.; Massiot, D.; Smith, M. E.; Bonhomme, C. J. Am. Chem. Soc. 2009, 131, 13430–13440.
[11]. Dincâ, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376–9377.
[12]. Davies, R. P.; Less, R. J.; Lickiss, P. D.; White, A. J. Dalton Trans. 2007, 24, 2528–2535.
[13]. Volkringer, C.; Marrot, J.; Férey, G.; Loiseau, T. Cryst. Growth Des. 2008, 8, 685–689.
[14]. Williams, C. A.; Blake, A. J.; Wilson, C.; Hubberstey, P.; Schröder, M. Cryst. Growth Des. 2008, Vol. 8, pp. 911−922.
[15]. Mantion, A.; Massüger, L.; Rabu, P.; Palivan, C.; McCusker, L. B.; Taubert, A. J. Am. Chem. Soc. 2008, 130, 2517–2526.
[16]. Weiner, S.; Wagner, H. D. Annu. Rev. Mater. Sci. 1998, 28, 271–298.
[17]. Davis, J. P.; Tikunova, S. B. Cardiovasc Res. 2008, 77, 619–626.
[18]. Means, A. R.; Dedman, J. R. Nature 1980, 285, 73–77.
[19]. Celio, M. R.; Heizmann, C. W. Nature 1982, 297, 504– 506.
[20]. Kuchibhotla, K. V.; Lattarulo, C. R.; Hyman, B. T.; Bacskai, B. J. Science 2009, 27, 1211–1215.
[21]. Greenwood, N. N.; Earnshaw, A. Chemistry of the elements, 1st ed.; Pergamon Press: Oxford, 1984.
[22]. Jones, J. R.; Ehrenfried, L. M.; Hench, L. L. Biomaterials 2006, 27, 964–973.
[23]. Atassi, F.; Byrn, S. R. Pharm. Res. 2006, 23, 2405–2412.
[24]. Kamakura, S.; Sasaki, K.; Honda, Y.; Masuda, T.; Anada, T.; Kawai, T.; Matsui, A.; Matsui, K.; Echigo, S.; Suzuki, O. Key Eng. Mater. 2008, 361–363, 1229–1232.
[25]. Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55–80.
[26]. Frens, G. Nat. Phys. Sci. 1973, 241, 20–22.
[27]. Yang, Z.; Liang, G.; Wang, L.; Xu, B. J. Am. Chem. Soc. 2006, 128, 3038–3043.
[28]. Yan, C.; Pochan, D. J. Chem. Soc. Rev. 2010, 39, 3528−3540.
[29]. Ma, M.; Kuang, Y.; Gao, Y.; Zhang, Y.; Gao, P.; Xu, B. J. Am. Chem. Soc. 2010, 132, 2719–2728.
[30]. Yang, Z.; Liang, G.; Ma, M.; Gao, Y.; Xu, B. J. Mater. Chem. 2007, 17, 850–854.
[31]. Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104, 1201−1218.
[32]. Wade, L. G., Jr. Organic Chemistry, 6th ed.; Pearson Prentice-Hall: Upper Saddle River, NJ, 2006.
[33]. Mantion, A.; Taubert A. Macromol. Biosci. 2011, 7, 208–217.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊