跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張靖偉
研究生(外文):Jing-Wei Chang
論文名稱:以模擬探討定子-轉子旋轉盤反應器之流力行為
論文名稱(外文):Simulation on fluid flow behaviour in a rotor - stator spinning disk reactor
指導教授:陳昱劭
指導教授(外文):Yu-Shao Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:119
中文關鍵詞:定子-轉子旋轉盤反應器計算流體力學
外文關鍵詞:rotor-stator spinning disc reactorCFD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
定子-轉子旋轉盤反應器(rotor-stator spinning disc reactor, RS-SDR)是製程強化中新穎的裝置,具有良好的熱、質傳反應,並可調控流體於反應器內的滯留時間,因此本研究以模擬探討RS-SDR之流力特性,透過商用計算流體力學(Computational Fluid Dynamics, CFD)軟體Fluent 14.0以二維軸對稱對RS-SDR進行模擬,最後與文獻的實驗結果進行比較,進一步確認模擬與實驗間的誤差值,以確信CFD軟體模擬之可信度。
於模擬中,探討單相流體於改變通道寬度、轉速、進料流率等操作變因對流動型態的影響。由結果得知,增加轉速及進料流率皆可使流體速度提升,而壓降也隨著進料流率及轉速提升而增加。其次探討兩相流體於轉速、液體進料流率、氣體進料流率、空腔區(cavity zone)之徑向距離變化對反應器內流動的影響,由結果顯示,液體於上層通道主要流態分為塊狀流(slug flow)及液膜流動,隨著轉速提高,可改善氣體於空腔區的累積,並有助於氣體在下通道中形成小氣泡流動。此外將模擬結果與文獻之壓降、速度分布在相同的操作條件下進行比較,得到模擬之壓降值較實驗值高,但是模擬的壓降與速度分布之結果則與文獻中的趨勢相似。
由改良模型的結果得知,加上貫穿轉盤的流體分布通道,能改善氣體於空腔區之堆積,使下通道中容易出現破碎的小氣泡。根據實驗結果,以利未來於反應器性質研究上有明確的方向。
Rotor-stator spinning disc reactor (RS-SDR) is a novel equipment which has high heat and mass transfer efficiency for process intensification. In this study, the characteristics of hydrodynamics of the device were investigated by simulation. A commercial Computational Fluid Dynamics (CFD) software, Fluent 14.0, was used in the simulation. The simulation results were compared with the experimental results in references to confirm the reliability of the CFD model.
The influences of the rotor-stator distance, the rotational speed, and liquid flow rate were investigated. The results showed that both the radial and the circumferential velocities increased with increasing the rotational speed and the liquid flow rate. Likewise, the pressure drop increased as the liquid flow rate and the rotational speed increased.
Next, the influence of the rotational speed, the liquid flow rate, the gas flow rate, and the size of cavity zone were investigated in the two-phase flow system. According to the result, two types of liquid flow, i.e., slug flow and film flow, were found in the upper channel of the RS-SDR. Because of high centrifugal force, the accumulation of gas can be reduced in the cavity zone and small gas bubbles size were generated between the rotor and the bottom stator.
Besides, the simulation results of the flow behavior of liquid and the pressure drop were compared with the experimental results in references under the same operating conditions. Even though the simulated pressure drop is higher than that in reference, the trends of the simulated pressure drop and velocity distribution were similar to the experimental ones.
Finally, several designs of RS-SDR were tested. The results showed that the accumulation of gas in cavity zone can be effectively decreased by using perforated disc which contributes to easily forming small gas bubbles in the bottom channel. According to the experimental results, the optimization design of the RS-SDR is capable of being investigated in the future work.
目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 2
2-1 超重力介紹 2
2-1-1超重力技術起源 2
2-1-2超重力裝置介紹 3
2-2 定子-轉子旋轉盤反應器之特性 10
2-2-1單相之流動特性 10
2-2-2 氣、液兩相於反應器之流動型態與質傳特性 19
2-2-3定子-轉子旋轉盤反應器應用 28
2-3計算流體力學於超重力系統之研究 33
第三章 實驗方法 41
3-1 幾何模型建立 41
3-2 網格劃分 48
3-3 Fluent 設定 50
3-3-1 基本設定介紹 50
3-3-2 多相流模型(Multiphase Model) 51
3-3-3 湍流模型 53
3-3-4 流場初始狀態與邊界條件 54
第四章 實驗結果與討論 56
4-1 液體之流力特性分析 56
4-1-1 不同通道寬度與轉速之影響 61
4-1-2 液體流率之影響 69
4-1-3 液體流率與轉速對壓降的影響 73
4-2兩相流流體之流力分析 76
4-2-1 不同通道寬度與轉速之影響 76
4-2-2 氣體流率之影響 81
4-2-3 液體流率之影響 84
4-2-4 空腔區徑向間隙之影響 87
4-2-5 兩相流之壓降探討 90
4-3 模擬結果與文獻之比較 91
4-4 定子-轉子旋轉盤反應器之優化與設計 94
第五章 結論 97
參考文獻 99
符號表 103
附錄A 單相流之壓降數據 106
附錄B 兩相流之壓降數據 (通道寬度2mm,轉速100rad/s) 108
圖目錄
Fig. 2-1旋轉填充床反應器示意圖 (Chen and Liu, 2002) 3
Fig. 2-2填料床之填料分布 (Sandilya et al., 2005) 4
Fig. 2-3分離式填料旋轉填充床示意圖 (Shivhare et al., 2013)4
Fig. 2-4 RZB結構示意圖 (Wang et al., 2013) 5
Fig. 2-5液氣在RZB內接觸過程 (Wang et al., 2013) 5
Fig. 2-6加裝擋板之葉片旋轉填充床(Sung and Chen, 2012) 6
Fig. 2-7填充床之填料分布 (a)葉片 (b)擋板(Sung and Chen, 2012) 6
Fig. 2-8旋轉盤反應器結構示意圖 (Pask et al., 2013) 7
Fig. 2-9 RS-SDR反應器示意圖 (Meeuwse et al., 2011) 9
Fig. 2-10多級RS-SDR反應器示意圖 (Meeuwse et al., 2012) 9
Fig. 2-11 RS-SDR之不同流態示意圖 (a) Stewartson flow (b) Batchelor flow (c) Couette flow (Cw = 0) (Beer et al. 2014) 11
Fig. 2-12速度之軸向分布圖 (a)徑向速度 (b)切線速度 (旋轉雷諾數 = 1.06×106 ) (Cheah et al., 1994) 12
Fig. 2-13速度之軸向分布圖 (a)徑向速度 (b)切線速度(旋轉雷諾數 = 3×105 ) (Cheah et al., 1994) 12
Fig. 2-14定子-轉子反應器內流動型態圖 (Djaoui et al., 2001) 13
Fig. 2-15不同徑向位置之平均速度曲線圖,徑向位置為 (a) r* = 0.44 (b) r* = 0.56 (c) r* = 0.8 (旋轉雷諾數為106,Cw = 0,間隙比為0.036) ( ̶ ) RSM model (○)實驗數據 (Poncet et al., 2005) 15
Fig. 2-16不同徑向位置之平均速度曲線圖,徑向位置為(a) r* = 0.44 (b) r* = 0.56 (c) r* = 0.8 (旋轉雷諾數為106,Cw = 5929,間隙比為0.036) ( ̶ ) RSM model(○)實驗數據 (Poncet et al., 2005) 15
Fig. 2-17三維座標下液體流態 (Anderson and Lygren, 2006)16
Fig. 2-18 RS-SDR中間隙比為0.01~0.02,(a)切線 (b)徑向平均速度分布 (Anderson and Lygren, 2006) 17
Fig. 2-19 RS-SDR中間隙比為0.1~0.0632,(a)切線 (b)徑向平均速度分布 (Anderson and Lygren, 2006) 17
Fig. 2-20不同徑向位置之平均速度曲線圖 (Haddadi and Poncet, 2008) 18
Fig. 2-21定子-轉子旋轉盤反應器示意圖,液體自上殼層進入,氣體從轉盤下邊圓位置進入 (Meeuwse et al., 2010 a) 20
Fig. 2-22假定氣泡形狀側視圖 (Meeuwse et al., 2010 a) 20
Fig. 2-23氣液共同進料之定子-轉子旋轉盤反應器示意圖 (Meeuwse et al., 2010 b) 21
Fig. 2-24(a) Region F 轉子上的液膜及氣泡(b) Region D 圍繞轉子邊緣及轉子和定子間的小氣泡 (Meeuwse et al., 2010 b) 22
Fig. 2-25不同轉速對質傳係數(kLaGLVR)之影響,於 Region F、Region D、氣體進料口於下層通道 (Meeuwse et al., 2010 b) 22
Fig. 2-26液體流率與液氣質傳速率的關係 (轉盤半徑為135mm、通道寬度為5mm 、轉速為105 rad/s) (Meeuwse et al., 2011) 24
Fig. 2-27不同轉速下之液氣質傳速率於通道寬度為1、2、5 mm (轉盤半徑為135mm、液體流率為3 × 10−5 m3 s−1 、氣體流率為1.5× 10−5 m3 s−1) (Meeuwse et al., 2011) 24
Fig. 2-28 RS-SDR實驗裝置圖(Eeten et al., 2014) 25
Fig. 2-29 轉速及氣體流率與汽泡大小的關係(Eeten et al., 2014) 25
Fig. 2-30 不同旋轉雷諾數之下通道氣泡示意圖,旋轉雷諾數為(a) 0.4×106、(b) 1.5×106、(c) 2.4×106 (氣體流量為3×10-5 m3/s、液體流量為6×10-6 m3/s,通道寬度2 mm) (Beer et al., 2016) 27
Fig. 2-31 不同液體流量下於轉盤邊緣之液膜與氣泡示意圖,液體流量為(a) 3×10-6 m3/s、(b) 12×10-6 m3/s (氣體流量為6×10-6 m3/s,旋轉雷諾數為2.4×106,通道寬度2 mm) (Beer et al., 2016) 27
Fig. 2-32 RS-SDR構造示意圖 (Visscher et al., 2012) 29
Fig. 2-33葉輪定子旋轉盤反應器側視圖 (Visscher et al., 2013) 29
Fig. 2-34混合時間與能量消散速率關係圖 (Matinez et al., 2017) 30
Fig. 2-35實驗裝置示意圖 (Meeuwse et al., 2010 c) 31
Fig. 2-36實驗裝置示意圖 (Eeten et al., 2015) 32
Fig. 2-37 CFD模擬之流程圖 33
Fig. 2-38二維模型之非結構網格模型 (Yang et al., 2010) 34
Fig. 2-39 RPB之三維物理網格模型及填料示意圖 (Yang et al., 2010) 35
Fig. 2-40 (a)轉速及(b)氣體流速對壓降之影響 (Yang et al., 2010) 35
Fig. 2-41 (a)同心與同軸方向之絲網,(b)RPB之二維物理模型及填料示意圖 (Shi et al., 2013) 36
Fig. 2-42填料區中液相體積百分率等高線圖 (t = 0.5s) (Shi et al., 2013) 37
Fig. 2- 43 (a) 三維結構之旋轉填充床模型,(b) 旋轉填充床XY平面圖,1,填料區;2,空腔區;3,圓周向中心間距;4,徑向中心間距 (Guo et al., 2017) 38
Fig. 2-44旋轉填充床中液體流動模式N = 600 rpm, u = 0.5 m/s, t = 0.5 s (Guo et al., 2017) 39
Fig. 2-45轉速、填料徑向位置對液滴直徑之影響. (a) u = 0.5 m/s, r0 = 40 mm, r = 58.5 mm; (b) N = 600 rpm, r0 = 80 mm, u = 0.5 m/s (●, 3D CFD results; ▲, 2D CFD results; ■, experimental results by Yang). (t = 0.5 s). (Guo et al., 2017) 39
Fig. 2-46轉速對液體流速之影響 (Guo et al., 2017) 40
Fig. 2-47轉速對滯留時間之影響u = 0.5 m/s, r0 = 40 mm, r = 54 mm (Guo et al., 2017) 40
Fig. 3-1 RS-SDR之二維幾何模型示意圖 (a)單一流體 (b)兩相流體 42
Fig. 3-2 RS-SDR之三維模型參考圖 43
Fig. 3-3 RS-SDR之二維模型規格代號圖 44
Fig. 3-4 RS-SDR之模型設計 (a)轉盤上層加裝旋轉擋板 (b)轉盤側邊加裝旋轉圓盤 (c)加設氣體分布器 (d)氣體分布器與旋轉擋板結合 46
Fig.3-5 RS-SDR加裝擋板之三維示意圖 47
Fig. 3-6 RS-SDR之網格繪製 48
Fig. 3-7邊界條件設定圖 55
Fig. 4-1不同網格層數之模擬結果,(a)徑向 (b)切線速度分布 57
Fig. 4-2 不同網格層數之模擬結果,(a)徑向 (b)切線速度分布 58
Fig. 4-3不同網格層數之模擬結果,(a)徑向 (b)切線速度分布 59
Fig. 4-4 速度向量圖 (通道寬度為1 mm,轉速100 rad/s,液體流量為402 mL/min) 61
Fig. 4-5 不同徑向位置之(a)徑向(b)切線速度 (通道寬度為1 mm,轉速50 rad/s,流量為402 mL/min) 63
Fig. 4-6 不同轉速對(a)徑向(b)切線速度的影響 64
Fig. 4-7 不同徑向位置之(a)徑向(b)切線速度 65
Fig. 4-8 不同轉速對(a)徑向(b)切線速度的影響 66
Fig. 4-9 不同徑向位置之(a)徑向(b)切線速度 67
Fig. 4-10 不同轉速對(a)徑向(b)切線速度的影響 68
Fig. 4-11 不同流率下之徑向、切線速度分布圖 徑向位置為10 mm (a)、(b),徑向位置為40 mm (c)、(d) 70
Fig. 4-12不同流率下之徑向、切線速度分布圖 徑向位置為10 mm (a)、(b),徑向位置為40 mm (c)、(d) 71
Fig. 4-13不同流率下之徑向、切線速度分布圖 徑向位置為10 mm (a)、(b),徑向位置為40 mm (c)、(d) 72
Fig. 4-14不同網格層數之壓降模擬結果 (轉速為200 rad/s,液體流量為402 mL/min) 74
Fig. 4-15壓降之變化於不同(a)進料流率(b)轉速 (通道寬度為1mm) 74
Fig. 4-16 不同轉速下於徑向方向之剪切速率 75
Fig. 4-17不同時間下之兩相體積分布圖 (a) 50 rad/s, t =1.38、3.68、5.5、6.88 s 78
Fig. 4-18不同時間下之兩相體積分布圖 (a) 50 rad/s,t = 5.8s (b) 100 rad/s,t = 5.7s (c) 200 rad/s, t = 2.9s (d) 300 rad/s, t = 1.885s 79
Fig. 4-19 上層通道之徑向速度, r = 10、20、30、40 mm 80
Fig. 4-20速度向量圖 (通道為1 mm,轉速為100 rad/s,液體流量為402 mL/min,氣體流量為438 mL/min) 80
Fig. 4-21 不同氣體流率之兩相體積分布圖 (a) 氣體流率為 300 mL/min,t = 7.6 s (b) 氣體流率為 438 mL/min,t = 6.9 s (c) 氣體流率為 600 mL/min,t = 5.8 s (d) 氣體流率為 750 mL/min,t = 5.3 s 82
Fig. 4-22 不同轉速之兩相體積分布圖 83
Fig. 4-23 不同液體流率之兩相體積分布圖 85
Fig. 4-24 不同轉速下之兩相體積分布圖,QL = 900 mL/min (a) 50 rad/s,(b) 100 rad/s,(c) 200 rad/s (通道寬度2 mm,轉速50 rad/s,氣體流率600 mL/min) 86
Fig. 4-25 不同空腔區徑向距離之兩相體積分布圖 88
Fig. 4-26不同空腔區距離下之速度向量圖,空腔區距離為 (a) 10 mm (b) 5 mm (c) 3mm 89
Fig. 4-27 不同時間下之兩相流壓降於氣體流率為 (a) 300 mL/min、(b) 600 mL/min、(c) 750 mL/min 90
Fig. 4-28 CFD與文獻結果之速度分布圖比較 92
Fig. 4-29 CFD與實驗結果之單層壓降比較 (通道寬度1 mm,進料流率1620 mL/min) 93
Fig. 4-30 不同轉盤設計之液氣分布圖 (a) Design a(b) Design b (c) Design c (d) Design d 96

表目錄
Table 3.1定子-轉子旋轉盤反應器規格 44
Table 3.2網格劃分之相關參數 49
Table 3.3邊界條件設定 54
Table 4.1 網格疏密之速度誤差值(通道寬度1、2、3 mm) 60
Anderson, H. I., Lygren, M., (2006) LES of open rotor-stator flow. International Journal of Heat and Fluid Flow. No. 4, pp. 551-557.

Batchelor, G. K., (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally symmetric flow. The Quarterly Journal of Mechanics and Applied Mathematics. No. 1, pp. 29-41.

Burns, J.R., Ramshaw, C., (1996) Process intensification: visual study of liquid maldistribution in rotating packed beds. Chemical Engineering Science. No. 8, pp. 1347-1352.

Bödewadt, U. T.,(1940) Die Drehströmung über festem Grunde. Journal of Applied Mathematics and Mechanics. No. 5, pp. 241-253.

Beer, M.M., Keurentjes, J.T.F., Schouten, J.C., Schaaf, J., (2016) Bubble formation in co-fed gas–liquid flows in a rotor-stator spinning. International Journal of Multiphase Flow. Vol. 83, pp. 142-152.

Chandra, A., Goswami, P. S., and Rao, D. P., (2005) Characteristics of flow in a rotating packed bed (HIGEE) with split packing. Industrial & Engineering Chemistry Research. No. 44, pp. 4051- 4060.

Chen, Y.S., Liu, H.S., (2002) Absorption of VOCs in a rotating packed bed. Industrial & Engineering Chemistry Research. No. 41, pp. 1583-1588.

Chew, J. W., (1984) Prediction of flow in rotating disc systems using the k-ϵ turbulence model. The American Society of Mechanical Engineers., Vol. 4, pp. 1-9 .

Cheah, S.C., Iacovides, H., Jackson, D.C., Ji, H. and Launder, B.E., (1994) Experimental investigation of enclosed rotor-stator disk flows. Experimental Thermal and Fluid Science. No. 4, pp. 445-455.

Daily, J. W., Nece, R. E., (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. The American Society of Mechanical Engineers. No. 1, pp. 217-230.


Djaoui, M., Dyment, A., Debuchy R., (2001) Heat transfer in a rotor-stator system with a radial inflow. European Journal of Mechanics. No. 3, pp. 371-398.

Eeten, K.M.P., Houben, H.H.H., Schaaf, J., Schouten, J.C., (2014) An experimental and theoretical study on the size of bubbles formed between a rotating disc and a stationary wall. Chemical Engineering Science. No. 19, pp. 251-263.

Eeten, K.M.P., Hulsman, D.H.J., Schaaf, J. and Schouten, J.C., (2015) Hydrodynamical particle containment in a rotor‐stator spinning disk device. American Institute of Chemical Engineers. No. 11, pp. 3656-3665.

Guo, T.Y., Cheng K.P., Wen L.X., Andersson, R., and Chen, J.F., (2017) Three-dimensional simulation on liquid flow in a rotating packed. Industrial & Engineering Chemistry Research. No. 28, pp. 8169-8179.

Haddadi, S. and Poncet, S., (2008) Turbulence modeling of torsional couette flows. International Journal of Rotating Machinery.Vol. 2008 pp. 1-27 .

M. Itoh, Y. Yamada, S. Imao, and M. Gonda., (1990) Experiments on turbulent flow due to an enclosed rotating disk. Experimental Thermal and Fluid Science No.3, pp. 359-368.

Meeuwse, M., Schaaf, J., Kuster, B.F.M., Schouten, J.C., (2010 a) Gas-liquid mass transfer in a rotor-stator spinning disc reactor. Chemical Engineering Science. No. 1, pp. 466-471.

Meeuwse, M., Schaaf, J. and Schouten, J.C., (2010 b) Mass transfer in a rotor-stator spinning disk reactor with cofeeding of gas and liquid. Industrial & Engineering Chemistry Research. No. 4, pp. 1605-1610.

Meeuwse, M., Lempers, S., Schaaf, J. and Schouten, J.C., (2010 c) Liquid-solid mass transfer and reaction in a rotor-stator spinning disc reactor. Industrial & Engineering Chemistry Research. No. 21, pp. 10751-10757.

Meeuwse, M., Hamming, E., Schaaf, J. and Schouten, J.C., (2011) Effect of rotor-stator distance and rotor radius on the rate of gas–liquid mass transfer in a rotor-stator spinning disc reactor. Chemical Engineering and Processing: Process Intensification. No. 10, pp. 1095-1107.


Meeuwse, M., Schaaf, J. and Schouten, J.C., (2012) Multistage rotor-stator spinning disc reactor. American Institute of Chemical Engineers Journal. No. 1, pp. 247-255.

Martínez, A.N. M., Eeten, K.M.P., Schouten, J.C., and Schaaf, J.C., (2017) Micromixing in a rotor-stator spinning disc reactor. Industrial & Engineering Chemistry Research. No. 45, pp. 13454-13460.

Poncet, S., Chauve M.P. and Schiestel, R., (2005) Batchelor versus stewartson flow structures in a rotor-stator cavity with throughflow. American Institute of Physics. No. 7,pp. 1-16.

Pask, S. D., Cai, Z., Mack, H., Marc, L. and Nuyken, O., (2013) The spinning disk reactor for polymers and nanoparticles. Macromolecular Journals. No. 7, pp. 98-106.

Stewartson, K., (1953) On the flow between two rotating coaxial disks. Mathematical Proceedings of the Cambridge Philosophical Society. No. 2, pp. 333-341.

Stankiewicz, A.I. and Moulijn, J.A. (2000) Process intensification: transforming chemical engineering. Chemical Engineering Progress. No. 2, pp. 22-33.

Sung, W.D., Chen, Y.S., (2012) Characteristics of a rotating packed bed equipped with blade packings and baffles. Separation and Purification Technology. Vol. 93, pp. 52-58.

Shivhare, M. K., Rao D.P. and Kaistha, N., (2013) Mass transfer studies on split-packing and single-block packing rotating packed beds. Chemical Engineering and Processing: Process Intensification. Vol. 71, pp. 115-124.

Shi, X., Xiang, Y., Wen, L.X., Chen, J.F., (2013) CFD analysis of liquid phase flow in a rotating packed bed reactor. Chemical Engineering Journal.Vol. 228, pp. 1040-1049.

Von Kármán, T., (1921) Über laminare und turbulente Reibung. Journal of Applied Mathematics and mechanics. No. 4, pp. 233-252.

Visscher, F., Schaaf J., Croon, M.H.J.M., Schouten, J.C., (2012) Liquid–liquid mass transfer in a rotor-stator spinning disc reactor. Chemical Engineering Journal. Vol. 185 -186, pp. 267-273.

Visscher, F., Nijhuis, R.T.R., Croon, M.H.J.M., Schaaf, J., Schouten, J.C., (2013) Liquid–liquid flow in an impeller-stator spinning disc reactor. Chemical Engineering and Processing . Vol. 71, pp. 107-114.
Wang G.Q., Xu, Z.C., Yu, Y.L., Ji, J.B., (2008) Performance of a rotating zigzag bed-a new higee. Chemical Engineering and Processing. No. 47, pp. 2131-2139.

Yang, W.J., Wang, Y.D., Chen, J.F., Fei, W.Y., (2010) Computational fluid dynamic simulation of fluid flow in a rotating packed bed. Chemical Engineering Journal. No. 17, pp. 582-587.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top