跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:寇皓翔
研究生(外文):Hau-Shiang Kou
論文名稱:車用水箱塗佈奈米碳球之熱液動性能研究
論文名稱(外文):The Study of Thermo-Hydraulic Performance for Automobile Radiator with Carbon Nanocapsules Materials Coating
指導教授:艾和昌艾和昌引用關係
指導教授(外文):Herchang Ay
口試委員:林秋豐黃正弘
口試委員(外文):Chiu-Feng LinCheng-Hung Huang
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:74
中文關鍵詞:車用水箱、板翼式、波翼式、奈米碳球、塗佈材料、熱液動
外文關鍵詞:Automobile radiators, Carbon nanocapsules, Materials, Coating.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:608
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
車用水箱為汽車引擎冷卻系統中最重要的機件,若車用水箱散熱能力不足,會導致周圍零件軟化、加速磨損、機油消耗量大及馬力降低等問題。因此,如何提促進水箱的散熱能力,是提升汽車引擎性能的關鍵課題。
提升車用水箱性能的方法包括改變鰭片形式及角度、改變工作流體及塗佈抗垢防蝕材料等。其中塗佈抗垢防蝕材料未有提升熱傳性能作用。因此本研究藉由奈米碳球作為塗佈材料,以不增加成本,除保有抗垢及防蝕效果,並可提升熱傳性能為研究目標。
本研究採用奈米碳球粉體塗裝商用波翼式及板翼式之車用水箱,以低速風洞、恆溫水槽、熱電偶、微差壓計及資料擷取器等設備進行量測,探討車用水箱有無塗裝奈米碳球材料,並在不同空氣側雷諾數(Rea=0~6214.2)及水側雷諾數(Rew=1222.8~5502.8)下,探究其熱液動性能的影響。
研究發現塗佈後波翼式車用水箱之熱傳性能最高提升23 %,最低提升8 %。塗佈後板翼式車用水箱之熱傳性能最高提升17 %,最低提升5 %。當空氣側流場為層流時,無塗佈板翼式之熱傳性能比無塗佈波翼式高約9 %。當空氣側流場為紊流時時,無塗佈波翼式之熱傳性能比無塗佈板翼式高約12 %。當空氣側流場為層流時,塗佈後板翼式之熱傳性能比塗佈後波翼式高約5 %。當空氣側流場為紊流時,塗佈後波翼式之熱傳性能比塗佈後板翼式高約16 %。

Automobile radiator is the key component in the cooling system of the engine for a car. There are some problems will be caused if the thermo- hydraulic performance overheating such as the parts soften, abrasion, amount of oil consumption and the power decrease. However, how to enhance the thermo-hydraulic performance of automobile radiators is a key problem in the vehicle industry.
The methods of enhance the automobile radiator performance such as change the angle of the fin and shape, change the working fluid and coated surface. But the method of the coated surface cannot enhance the thermo-hydraulic performance for automobile radiator. Therefore, the objectives of this study will use carbon nanocapsules material coating to enhance the automobile radiator performance without increase the principle. And also enhance the anti-fouling and the corrosion resistant features of the automobile radiator.
This study used carbon nanocapsules material coating to enhance the automobile radiator performance of wave-fin and plate-fin. And use the wind tunnels, thermostatic water bath, data miner and differential pressure gauges to measurement the automobile radiator performance of coated and uncoated carbon nanocapsules material. Finally, investigate the effects of automobile radiator thermo-hydraulic performance in different air-side Reynolds number (Rea=0~6214.2) and water-side Reynolds number (Rew=1222.8~5502.8).
The results show that, the averaged heat transfer performances of wave-fin radiator with coating the carbon nanocapsules materials have 8-23% higher than without coating. The averaged heat transfer performances of plate-fin radiator coating the carbon nanocapsules materials have 5-17% higher than without coating. When the air-side flow field is laminar, the plate-fin of automobile radiator without coating which heat transfer performance will higher than wave-fin automobile radiator without coating (increase about 9%). When the air-side flow field is turbulence, the wave-fin of automobile radiator without coating which heat transfer performance will higher than plate-fin of automobile radiator without coating (increase about 12%). When the air-side flow field is laminar, the plate-fin of automobile radiator with coating which heat transfer performance will higher than wave-fin of automobile radiator with coating (increase about 5%). When the air-side flow field is turbulence, the wave-fin of automobile radiator with coating which heat transfer performance will higher than plate-fin of automobile radiator with coating (increase about 16%).

摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 2
1.2.1改變鰭片構型對熱傳性能之相關研究 2
1.2.2不同工作流體對熱傳性能之相關研究 3
1.2.3塗佈材料對抗污垢及防腐蝕效果之相關研究 4
1.3研究目的 6
1.4本文架構 6
第二章 基礎理論 7
2.1車用水箱介紹 7
2.1.1引擎冷卻系統的組成 7
2.1.2車用水箱之結構 7
2.2奈米塗料介紹 8
2.2.1光學性能的應用 8
2.2.2電磁學性能的應用 8
2.2.3力學性能的應用 9
2.2.4流體力學性能的應用 9
2.3奈米碳球介紹 9
2.3.1奈米碳球的結構 9
2.3.2中空奈米碳球的製備 9
2.3.3中空奈米碳球的應用 10
2.3.4奈米碳球塗佈方式 10
2.4熱傳遞原理 11
2.4.1熱傳導 11
2.4.2熱對流 11
2.4.3熱輻射 13
2.4.3奈米碳球提升熱傳之原因 13
第三章 實驗設備與方法 19
3.1實驗設備 19
3.1.1低速風洞 19
3.1.2恆溫水槽 20
3.1.3風速計 20
3.1.4資料擷取器及熱電偶 20
3.1.4微差壓計 20
3.2測試件介紹 20
3.3塗佈方式介紹 21
3.4實驗方法與步驟 21
3.5實驗數據分析 21
3.5.1水側及空氣側散熱量計算 21
3.5.2水側及空氣側雷諾數計算 23
3.5.3水側及空氣側紐賽數計算 24
3.6誤差分析 26
3.6.1熱電偶 26
第四章 結果與討論 35
4.1不同水側及空氣側雷諾數對無塗佈表面波翼式車用水箱之熱液動特性探討 35
4.2不同水側及空氣側雷諾數對無塗佈表面板翼式車用水箱之熱液動特性探討 36
4.3有無塗佈表面對波翼式車用水箱之熱液動特性探討 37
4.4有無塗佈表面對板翼式車用水箱之熱液動特性探討 39
4.5塗佈表面與構型對車用水箱之熱液動特性探討 40
4.6塗佈表面與構型對壓降的影響 42
第五章 結論 50
5.1結論 50
5.2未來展望 50
參考文獻 52
作者介紹 58

[1]曲芳,1988, “新型散熱器技術及汽車用銅和黃銅製散熱器” ,銅加工,29卷,1期,頁167-178。
[2]佟郜靜,2000, “國外汽車水箱材料的發展趨勢” ,洛陽工學院學報,21卷2期,頁263-270。
[3]Crouse, W.H. and Anglin, D.L., 2007,汽車學(一)汽車引擎,劉崇富譯,美商麥格羅希爾國際股份有限公司,頁103、263-270。
[4]燕來榮,2007, “汽車水冷發動機散熱技術的發展方向” ,客車技術與研究,15卷,5期,頁148-151。
[5]Suga, K. and Aoki, H., 1991, “Numerical study on heat transfer and pressure drop in multilouvered fins”, ASME/JSME Thermal Engineering Proceedings, Vol. 4, pp.361-368.
[6]Hatada, T. and Senshu, T., 1984, “Experimental study on heat transfer characteristic of convex louver fin for air conditioning heat exchangers”, ASME, Vol. 84, pp.4-7.
[7]Hadata, T., 1989, “Improved heat transfer performance of air coolers by strip fins controlling air flow distribution”, ASHRAE Trans, Vol. 1, pp.166-170.
[8]Leonga, K.Y., Saidura, R., Kazia, S.N. and Mamunc, A.H., 2010, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)”, Applied Thermal Engineering, Vol. 30, pp.2685-2692.
[9]Narakia, M., Peyghambarzadeha, S.M., Hashemabadib, S.H., Vermahmoudia, Y., 2013, “Parametric study of overall heat transfer coefficient of CuO water nanofluids in a car radiator”, International Journal of Thermal Sciences, Vol. 66, pp.82-90.
[10]Peyghambarzadeha, S.M., Hashemabadib, S.H., Hoseinia, S.M. and Seifi, J.M., 2011, “Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators”, International Communications in Heat and Mass Transfer, Vol. 38, pp.1283-1290.
[11]Bemisderfer, C.H., 1987, “Heat transfer: A contemporary analytical tool for developing improved heat transfer surfaces”, ASHRAE Trans, Vol. 1, pp.1157-1166.
[12]Wang, C.C., Chen, P.Y. and Jang, J.Y., 1996, “Heat transfer and friction characteristics of convex-louver fin-and-tube heat exchangers”, Experimental heat transfer, Vol. 9, pp.61-78.
[13]Wang, C.C., Tsai, Y.M. and Lu, D.C., 1998, “Comprehensive study of convex-louver and array fin-and tube heat exchangers”, Journal of thermophysics and heat transfer, Vol. 12, pp.423-430.
[14]何秋星、胡劍青、涂偉萍,2005, “塗料體系中納米粉體的表面改性及分散研究進展” ,化工進展,24卷,10期。
[15]程延海、煞勇、程林、劉文,2009, “防垢塗層對熱交換器表面性能的影響” ,化學工程,37卷,2期。
[16]潘持錫、張雙喜、劉傑、張譯文,2009, “噴塑塗層厚度對散熱器散熱量影響的實驗研究” ,建築科學,25卷,2期。
[17]Suga, K., Aoki, H. and Shinagawa, T., 1990, “Numerical analysis on two-dimensional flow and heat transfer of louvered fins using overlaid grids”, JSME International Journal Series Ⅱ, Vol. 33, No.3, pp.15-16.
[18]Hiramatsu, M.T. and Matsuzaki, K., 1990, “Research on fins air conditioning heat exchangers”, JSME International Journal Series Ⅱ, Vol.33, No.4, pp.22-32.
[19]Webb, R.L. and Trauger, P., 1991, “Flow structure in the louvered fin heat exchanger geometry”, Experimental Thermal and Fluid Science, Vol. 40, No.3, pp.87-91.
[20]Atkinson, K.N., Drakulic, R., Heikal, M.R. and Cowell, T.A., 1998, “Two-and-Three -diamenal numerical models of flow and heat transfer over louvered fin arrays in compact heat exchangers”, International Journal of Heat and Mass Transfer, Vol. 41, pp.4063-4080.
[21]Thomas, P. and Denis, C., 2004, “Thermal-hydraulic CFD study in louvered fin-and-flat-tube heat exchangers”, International Journal of Refrigeration, Vol. 27, pp.422-432.
[22]劉展宏,2009,運作中平板熱管在不同燒結毛細結構與工作流體下之蒸發區可視化觀察與量測,國立清華大學,碩士論文。
[23]林宇中,2010,平板熱管之可視化觀察與蒸發熱組量測-不同工作流體與表面潤濕性之效應,國立清華大學,碩士論文。
[24]Maxwell, J.C., 1904, A treatise on electricity and magnetism, Second Edition, Oxford university press, New York.
[25]Hamilton, R.L. and Crosser, O.K., 1962, “Thermal conductivity of heterogeneous two-component systems”, Industrial & Engineering Chemistry Fundamentals, Vol. 1, pp.87-191.
[26]Liu, K.V. and Choi, U.S., 1988, “Measurements of pressure drop and heat transfer in turbulent pipe flows of particulate slurries”, Argonne National Laboratory Report, Vol.88, pp.13-17.
[27]Choi, S., 1995, “Enhancing thermal conductivity of fluids with nano-particles”, ASME Fluids Engineering Division, Vol. 231, pp.99-105.
[28]Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J. and Lee, S., 1997, “Enhanced thermal conductivity through the development of nano-fluids”, Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, pp.3-11.
[29]Eastman, J.A., Choi, S., Li, S., Soyez, G., Thompson, L.J. and Melfi, R.J.D., 1999, “Novel thermal properties of nano-strucred materials”, Master of Science, Vol. 5, pp.312-314.
[30]Keblinski, P., Phillpot, S.R., Choi, S. and Eastman, J.A., 2002, “Mechanisms of heat flow in suspensions of nano-sized particles(nano-fluids)”, International Journal of Heat and Mass Transfer, Vol.45, pp.855-863.
[31]Xue, Q.Z., 2003, “Model for effective thermal conductivity of nano-fluid”, Physics Letters. Section A, Vol. 307, pp.313-317.
[32]Jang S.P. and Choi, S., 2004, “Role of brownian motion in the enhance thermal conductivity of nano-partles”, Applied Physics Letters, Vol. 84, pp.4316-4318.
[33]何彥慶,2012,發泡金屬散熱鰭片在自然對流條件下之熱傳性能,國立交通大學,碩士論文。
[34]陳建宏,2013,旁通概念應用在熱沉平板鰭片之熱傳性能分析與探討,國立交通大學,碩士論文。
[35]Homonnaya, Z., Kuzmannb, E., Vargac, K., Némethc, Z., Szabóc, A., Radóc, K., Makód, K. É., Kövére, L., Csernye, I., Vargae, D., Tóthe, J., Schunkf, J., Tilkyf, P. and Patekf, G., 2006, “Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators”, Journal of Nuclear Materials, Vol. 348, pp.191-204.
[36]Jahromi, S.A.J., AliPour, M.M. and Beirami. A., 2003, “Failure analysis of 101-C ammonia plant heat exchanger”, Engineering Failure Analysis, Vol. 10, pp.405-421.
[37]Fontana, S., Amendolab, R., Chevalier, S., Piccardo, P., Caboche, G., Viviani, M., Molins, R. and Sennour, M., 2007, “Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys”, Journal of Power Sources, Vol. 171, pp.652-662.
[38]Yang, Z., Xia, G.G., Maupin, G.D. and Stevenson, J.W., 2006, “Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications”, Surface and Coatings Technology, Vol. 201, pp.4476-4483.
[39]李鐵藩,2003,金屬高溫氧化和熱腐蝕,北京化學工業出版社發行。
[40]Sugama, T., Webter, R. and Rreams, W., 2000, “High-performance polymer coatings for carbon steel heat exchanger tubers in geothermal environments”, Journal of Materials Science, Vol. 35, pp.2145-2154.
[41]José, I.I.L., Francisco C.V. and Francisco, L.M., 2005, “Corrosion protection of carbon steel with thermoplastic coatings and alkyd resins containing polyaniline as conductive polymer”, Progress in Organic Coatings, Vol. 52, pp.151-160.
[42]陳立錚,2000,鰭片型式與表面塗佈對鰭管式熱交換器熱傳性能之研究,中國文化大學,碩士論文。
[43]傅文龍,1995,鰭片表面處理對鰭管式熱交換器的熱傳影響,元智大學,碩士論文。
[44]賴耿陽,1993,環氧樹酯應用實務,複姓出版社發行。
[45]陳劉旺、童欽文,1993, “塗料與塗料概要” ,塗料製造化學,5卷,4期,頁7。
[46]陳劉旺,1997, “塗料概論” ,工業塗料與高分子化學,3卷,6期,頁1。
[47]張立德、牟季美,1994,奈米材料學,遼寧科學出版社發行。
[48]武力民,2002, “關於奈米塗料的開發與產業化” ,新材料產業,4卷,2期,頁60-61。
[49]柯昌美、汪厚植,2003, “奈米複合塗料的製備” ,塗料工業,7卷,3期,頁14-16。
[50]吳嘉晏,2009,氣冷及水冷式機車引擎之三維熱液動性能分析,成功大學,碩士論文。
[51]王啟川,2007,熱交換設計,五南圖書出版股份有限公司發行。
[52]廖峰仕,2011,車用散熱水箱性能分析與改善之研究,朝陽科技大學,碩士論文。
[53]Webb, R.L. and Jung, S.H., 1992, “Air-side performance of enhanced brazed aluminum heat exchangers”, ASHEAE Transactions, Vol. 98, pp.391-401.
[54] Palmer, B.R., Stamatakis, P., Salzman, G.C., Bohren, C.F. and Allen, T.B., 1990, “Optimum particle size of titanium dioxide and zinc oxide for attenuation of ultraviolet radiation”, The Journal of Coatings Technology, Vol. 62, p.95.
[55]鄭柏存,1999, “超細粉末在塗料中的應用” ,上海建材,2卷,6期,頁31。
[56]張梅、楊緒杰,2000, “前景廣闊的奈米TiO2” ,航天工藝,5卷,1期,頁53。
[57]Vreugdenhil, A.J., Balbyshev, V.N. and Donley, M.S., 2001, “Nanostructured silicon sol-gel surface treatments for Al 2024-T3 protection”, Journal of Coatings Technology, Vol. 73, pp.35-43.
[58]杜振霞,2001, “改性奈米碳酸鈣表面性質的研究” ,現代化工,4期,頁42-45。
[59]力士創科公司,2001, “奈米環保工業水性塗料” ,中國塗裝,5卷,2期,頁25-27。
[60]David, D., Ganghua, T. and Mark, D.S., 2001, “Comparison of titanium-oxo-clusters derived from sol-gel precursors with TiO2 nanoparticles in drying oil based ceramer coatings”, Macromolecular Materials and Engineering, Vol. 286, pp.204-215.
[61]張而耕、王志文,2002, “淺析疏水防蝕奈米複合塗料” ,全面腐蝕控制, 16卷,3期,頁34-37。
[62]Kroto, H.D., Heath, J.R., O’Brien, S.C. and Smalley, R.E., 1985, “C60: Buckminsterfullerene”, Nature, Vol. 318, pp.162-163.
[63]Hwang, G.L., 2005, “Preparation of magentic metal filled carbon nanopolyhedra”, US Patent Pub No.6,872,236.
[64]Iijima, S., 1991, “Helical microtubules of graphitic carbon”, Nature, Vol. 44, pp.56.
[65]黃贛麟,2002,中空奈米碳球之製造方法,發明第197772號。
[66]徐濱士,1999,表面工程與維修,北京機械工業出版社發行。
[67]張忠禮,2004,鋼結構熱噴塗防腐蝕技術,北京化學工業出版社發行。
[68]Hwang, G.L., 2006, Preparation of hollow carbon nanocapsules, US Patent 7,156,958.
[69]Su, T.T., 2006, “Commercialization of Nanotechnology Taiwan Experiences”, Emerging Technologies Nanoelectronics, Vol. 4, pp.25-28.
[70]Zhang, J., Diao, Y.H., Zhao, Y.H. and Zhang, Y.N., 2014, “An experimental study of the characteristics of fluid flow and heat transfer in the multiport microchannel flat tube”, Applied Thermal Engineering, Vol. 65, pp.209-218.
[71]Dong, J., Su, L., Chen, Q. and Xu, W., 2013, “Experimental study on thermal–hydraulic performance of a wavy fin-and-flat tube aluminum heat exchanger”, Applied Thermal Engineering, Vol. 51, pp.32-39.
[72]Wen, J., Tang, D., Wang, Z., Zhang, J. and Li, Y., 2013, “Large eddy simulation of flow and heat transfer of the flat finned tube in direct air-cooled condensers”, Applied Thermal Engineering, Vol. 61, pp.75-85.
[73]Du, X., Feng, L., Yang, Y. and Yang, L., 2013, “Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generators”, Applied Thermal Engineering, Vol. 50, pp.55-62.
[74]Dehghandokht, M., Khan, M.G., Fartaj, A. and Sanaye, S., 2011, “Flow and heat transfer characteristics of water and ethylene glycol/water in a multi-port serpentine meso-channel heat exchanger”, International Journal of Thermal Sciences, Vol. 52, pp.1615-1627.
[75]Dittus, F.W. and Boelter, L.M.K., 1985, “Heat transfer in automobile radiators of the tubular type”, International Communications in Heat and Mass Transfer, Vol. 12, pp.3-22.
[76] Vithayasai, S., Kiatsiriroat, T. and Nuntaphan, A., 2006, “Effect of electric field on heat transfer performance of automobile radiator at low frontal air velocity”, Applied Thermal Engineering, Vol. 26, pp.2073-2078.
[77] 邱育暐,2002,水箱熱液動性能測試與分析及電腦輔助設計軟體之開發,國立成功大學,碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊