跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張伯薰
研究生(外文):Po-Hsun Chang
論文名稱:披覆奈米複合顆粒之多孔性陶瓷於材料抗菌除藻之研究
論文名稱(外文):Investigation of Porous Ceramic Covered with Nano Particles on Anti-septic and Algae-removing
指導教授:楊永欽楊永欽引用關係
口試委員:王玉瑞鍾清枝林鴻明
口試日期:2008-06-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:55
中文關鍵詞:奈米塗層抗菌除藻光觸媒
外文關鍵詞:Nano slurry coatingAnti-bacterialAlgae-removingPhoto-catalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用的多孔性陶瓷板基材主成分為氧化鋁及二氧化矽,披覆的奈米塗料則是包含TiO2、SiO2及Al2O3的奈米顆粒。藉由不同的測試配方找出最佳塗佈條件,讓奈米塗層能直接塗附並經自然乾燥而緊密披覆於陶瓷基板上,達到抗菌除藻防污的功效。實驗結果顯示,使用的奈米塗層其厚度約為100nm,經過1000次細海綿的洗刷,依然保有約80~90nm左右的厚度。在抗菌測試方面,使用大腸桿菌作為試驗菌株經過18小時的培養,披覆奈米塗層的陶瓷板能夠有效的將菌數從4.93´109(cfu/mL)降低至1.94´105(cfu/mL),抗菌率達到99.99%。而將此一具奈米鍍層的陶瓷板置於充滿綠藻的魚缸中,經過60小時後則可以有效的清除魚缸中的藻類,恢復魚缸中水質的澄清。此一技術可藉由將多孔性陶瓷板製造成各種成品配件而應用於水產養殖或是觀賞魚缸的抗菌及除藻。
Study of the porosity ceramics is basically made up of Al2O3 and SiO2. Nano -covered material contains nano TiO2, SiO2 and Al2O3 particles. By using a different test prescription to figure out the best spreading condition, nano material could be covered on the board of ceramics through directly attached and naturally dried to achieve the function of the antiseptic and algae-removing. Experimental result revealed that thickness of nano-covered material is approximately 100nm. After 1000 times washing and brushing of sponge, thickness of nano-covered material is still nearly 80-90nm. On the antiseptic test aspect, when we took 18 hours to cultivate colon bacillus, the porosity ceramics covered with nano particle material can decrease fungus from 4.93´109 (cfu/mL) to 1.94´105(cfu/mL), completely attaining 99.99% rate of antiseptic. The porosity ceramics covered with nano particle material put into a fish tank, which is full of green algae. Sixty hours later, it could effectively eliminate algae growth in the fish tank and turn into clearness of water quality. With such a technique, porosity ceramics could be done with various accessories; consequently, it could be implemented for aquatic industries; additionally, it is appropriate to view and admire algae-removing fish tank.
第一章 前言................................................1
第二章 原理與文獻回顧......................................4
2-1 奈米應用科技...........................................4
2-2 二氧化鈦光催化氧化反應的機制...........................5
2-3 溶液中物質造成二氧化鈦光催化氧化反應活性衰退...........6
2-3-1 鹽類的影響.......................................6
2-3-2 pH值的影響.......................................7
2-4 奈米二氧化鈦抗菌機制...................................7
第三章 實驗方法............................................9
3-1 材料與試片製備.........................................9
3-1-1 實驗材料.........................................9
3-1-2 實驗試片製備.....................................9
3-2 細菌培養..............................................10
3-2-1 細菌培養方法....................................10
3-2-2 細菌測試步驟....................................11
3-3 材料性質分析..........................................12
3-3-1 奈米塗料配方探討................................12
3-3-2 抗菌性質探討....................................12
3-3-3 防藻與除藻性質探討..............................13
第四章 結果與討論.........................................15
4-1 材料性質..............................................15
4-1-1 基板與奈米塗....................................15
4-1-2 披覆奈米塗料陶板在水中奈米顆粒之釋放率..........17
4-2 披覆奈米塗料陶板的抗菌................................18
4-2-1 固態培養皿抗菌實驗結............................18
4-2-2 液態試管抗菌實驗結果............................19
4-3 披覆奈米塗料陶板的防藻及除藻性能......................19
4-3-1 防藻實驗結果....................................19
4-3-2 除藻實驗結果....................................20
第五章 結論...............................................22
表目錄....................................................23
圖目錄....................................................29
參考文獻..................................................54
參考文獻

[1] Kuhn, K. P., I. F. Chaberny, K. Massholder, M. Stickler, V. W. Benz, H. G. Sonntag, L. Erdinger, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere. 53, (2003)71-77.
[2] Lee, S., M. Nakamura and S. Ohgaki, Inactivation of phage Qβ by 254nm UV light and Titanium dioxide photocatalyst, Journal of Environmental Science and Health, A33, (1998)1643-1655.
[3] Kim, B., D. Kim, D.Cho, S.Cho. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere, 52, (2003)277-281.
[4] Bock, C., H. Dittmar, H. Gemeinhardt, E. Bauer, K. O. Greulich, Comet assay detects cold repair of UV-A damages in human B-lymphoblast cell line. Mutat, Res. 408 , (1998) 111-120.
[5] W.A.,P. C. Maness, E. J. Wolfrum, D. M. Blake, J. A. Fennell,. Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental science and technology. 32,( 1998) 2650-2653.
[6] Penn, R. L. and J. F. Banfield.. Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania. American Mineralogist. Volume 84,( 1999) 871-876
[7] Bahneman D W et al. Mechanistic Studies of Water Detoxification in Huminated TiO2 Suspensions [J] Solar Energy Materials, 1991,24:564∼583.
[8] Wamer, W.G., J. J. Yin, R. R. Wie,. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free radical biology and medicine. 23, (1997)851-858. Jacoby,
[9] K Kato et al. Crystal Structures of TiO2 Thin Coatings Prepared from the Alkoxide Solution via the Dip-Coating Technique Affecting the Photocatalytic Decomposition of Aqueous Acetic Acid [J] .Journal of Materials Science, 1994,29:5911∼5915.
[10] Rincon, A. G., C. Pulgarin. 2003. Photocatalytical inactivation of light intensity and of (suspended-fixed) TiO2 concentration. Applied catalysis B:Environmental 44, (2003). 263-284
[11] M Lindner et al. Solar Water Detoxification: Novel TiO2 Powders as Highly Active Photocatalysts [J] Journal of Solar Energy Engineering, 1997,119:120∼125.
[12] Scot T Matin et al. Chemical Mechanism of Inorganic Oxidants in the TiO2╱UV process:Increased Rates of Degradation of Chlorinated Hydrocarbons [J]. Environmental Science & Technology, 1995,29(10):2567∼2573.
[13] Cho, Y., W. Choi, , Visible light-induced reaction of humic acids on TiO2, Journal of Photochemistry and Photobiology A: Chemistry 148,2002, 129-135.
[14] K.Vinodgopal et al. Enhanced Rates of Photocatalytic Degradation of an Azo Dye using SnO2╱TiO2 Coupled Semiconductor Thin Films [J]. Environmental Science & Technology, 1995,29(3):841∼845.
[15] Y Goswami. A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Process [J] .Journal of Solar Energy Engineering,1997,119(3):101∼107.
[16] NIEA E101.01C─「環境微生物檢測通則I—細菌」。
[17] 行政院環保署,1999。 CNS 10890 「食品微生物之檢驗法─生菌數之檢驗」,經濟部標準檢驗局,1991。
[18] 奈米協會「奈米光觸媒抗菌陶瓷面磚驗證規範草案」,2005。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top