跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孟繁嫣
研究生(外文):Meng, Fan-Yen
論文名稱:具短衝程阻尼器之調諧質量阻尼器研究
論文名稱(外文):Study on Short-Stroke Damper Assembled in Tuned Mass Damper
指導教授:劉俊秀劉俊秀引用關係鍾立來鍾立來引用關係
指導教授(外文):Liou, Gin-ShowChung, Lap-Loi
口試委員:黃炯憲連冠華
口試委員(外文):Huang, Chiung-ShiannLien, Kuan-Hua
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:148
中文關鍵詞:調諧質量阻尼器短衝程阻尼器最佳化設計阻尼器衝程
外文關鍵詞:Tuned Mass DamperShort-Stroke DamperOptimal DesignDamper stroke
相關次數:
  • 被引用被引用:0
  • 點閱點閱:565
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:1
現有調諧質量阻尼器之模型,阻尼器與質量塊之衝程相同,因此須選用較長衝程之阻尼器,在工程設計上必須預留相當阻尼器長度之空間及預期衝程距離,且長衝程阻尼器之高精度需求,於施工上也需要較佳的技術,使其造價較高且維護不易。根據此特性,本研究針對降低被動式TMD之阻尼器衝程,提出「具短衝程阻尼器之調諧質量阻尼器(SSD-TMD)」,將TMD之勁度分成兩段,並將阻尼器與第一段勁度並聯,再與第二段勁度串聯,接在質量塊之上,使其產生之衝程不相同,期望能大幅降低阻尼器之衝程,減少種種設計與施工上的困難。首先提出SSD-TMD之模型,沿用傳統TMD最佳化設計參數提出SSD-TMD之設計參數,利用直接搜尋法求得SSD-TMD所需之最佳化設計參數-最佳化勁度因子與最佳化阻尼係數因子,並求出SSD-TMD與傳統TMD之減振效果比、阻尼器衝程比與質量塊衝程比,接著利用曲線擬合與迴歸法提出單自由度結構加裝SSD-TMD最佳化設計公式。最後提出台北101結構案例分析,利用特徵分析、頻率反應函數及風力歷時數值模擬,綜合比較單自由度結構、單自由度結構加裝傳統TMD及單自由度結構加裝不同勁度比之SSD-TMD的減振效果,並進行SSD-TMD之勁度因子與阻尼係數因子敏感度分析。分析結果顯示SSD-TMD能有效大幅降低阻尼器衝程,且在適當的設計下,減振效果及質量塊衝程都略優於傳統TMD,但阻尼器必須付出較傳統TMD大之阻尼力。
The damper stroke and the mass stroke are the same for currently used conventional TMD, therefore, a long-stroke damper is required for engineering applications. In addition, a considerable space for the damper stroke is reserved in the design. Due to the high-accuracy requirement for manufacture of long-stroke damper, higher technology is requested. Besides, higher budget and the difficulty for maintenance are issues for long-stroke damper as well. According to the above features, a “Short-Stroke Damper assembled in Tuned Mass Damper (SSD-TMD)” is proposed in order to reduce the damper stroke of conventional TMD. The stiffness of SSD-TMD is separated into two parts. The first part is connected in parallel with the damper. Furthermore, the paralleled system is connected in series with the second part of stiffness which is further attached to the mass block. The assemblage will produce a different stroke between the damper and mass in order to significantly mitigate the damper stroke and solve the difficulties for both engineering applications and design. In this article, the model of SSD-TMD is firstly proposed. The design parameters of SSD-TMD is proposed following the optimal design parameters for conventional TMD. By using the Direct Search Method, the optimal deign parameters of SSD-TMD, optimal stiffness factor and optimal damping coefficient factor, will be able to determine. After that, the vibration reduction ratio, damper stroke ratio and mass stroke ratio of SSD-TMD to conventional TMD are further determined. By using curve fitting and the regression method, the optimal design formulae for a single degree of freedom (SDOF) structure implemented with SSD-TMD are defined. Finally, by a case study of Taipei 101, three different kinds of system: SDOF structure, SDOF structure with conventional TMD, SDOF structure with SSD-TMD, are compared by characteristic analysis, frequency response function and time history simulation, respectively. In addition, the sensitivity analysis of stiffness factor and damping coefficient factor is carried out. The results show that SSD-TMD can significantly reduce the damper stroke. Besides, both effectiveness of vibration reduction and mass stroke for SSD-TMD with suitable design can be better than the conventional TMD. However, the damping force of SSD-TMD is greater than the conventional one.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 3
1.3本文內容 5
第二章 具短衝程阻尼器之調諧質量阻尼器 6
2.1單自由度結構加裝傳統調諧質量阻尼器 6
2.2單自由度結構加裝SSD-TMD模型介紹 9
2.3單自由度結構加裝SSD-TMD頻率反應函數 10
2.4單自由度結構加裝SSD-TMD設計參數 12
第三章 SSD-TMD之最佳化設計 16
3.1直接搜尋法 16
3.1.1勁度因子與阻尼係數因子 17
3.1.2直接搜尋法之驗證 18
3.1.3減振效果分析 19
3.1.4衝程降低效果分析 20
3.2 最佳化設計公式 22
3.2.1無阻尼結構SSD-TMD勁度因子與阻尼係數因子最佳設計公式 22
3.2.2轉折點公式 24
3.2.3有阻尼結構SSD-TMD勁度因子與阻尼係數因子最佳設計公式 25
3.3最佳化設計公式誤差分析 28
3.4 SSD-TMD設計程序 30
第四章 單自由度結構加裝SSD-TMD案例分析 71
4.1台北101大樓之TMD系統 71
4.2 數值模擬 73
4.2.1 特徵分析 74
4.2.2 頻率反應函數 75
4.2.2.1 結構位移頻率反應函數 75
4.2.2.2 結構加速度頻率反應函數 75
4.2.2.3 阻尼器衝程頻率反應函數 76
4.2.2.4 質量塊衝程頻率反應函數 77
4.2.3風力歷時數值模擬 77
4.2.3.1 單自由度結構 77
4.2.3.2 加裝傳統TMD 78
4.2.3.3 加裝SSD-TMD 78
4.2.3.4 遲滯迴圈 80
4.2.3.5擺長偏折情形 80
4.3 敏感度分析 81
4.3.1 勁度因子敏感度分析 81
4.3.2 阻尼係數因子敏感度分析 82
4.3.3 等高線敏感度分析 83
第五章 結論與展望 118
5.1結論 118
5.2未來展望 120
參考文獻 121
附錄A 直接搜索工具(Direct Search) 124
附錄B 以DSM搜尋之最佳勁度因子與最佳阻尼係數因子 126
[1] Frahm H., “Device for damping vibrations of bodies”, Patent No.989-958, U.S., (1911).
[2] Den Hartog J.P., Mechanical Vibrations, 4th Edition, McGraw-Hill, New York(1956).
[3] Warburton G.B. and Ayorinde E.O., “Optimum absorber parameters for simple systems”, Earthquake Engineering and Structural Dynamics, 8:197-217(1980).
[4] Ayorinde E.O. and Warburton G.B., “Minimizing structural vibrations with absorbers”, Earthquake Engineering and Structural Dynamics, 8:219-236(1980).
[5] Warburton G.B., “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10:381-401(1982).
[6] Sadek F., Mohraz B., Taylor A.W. and Chung R.M., “A method of estimating the parameters of mass dampers for seismic applications”, Earthquake Engineering and Structural Dynamics, 26:617-635(1997).
[7] Ghosh A. and Basu B., “A closed-form optimal tuning criterion for TMD in damped structures”, Structural Control and Health Monitoring, 14:681-692(2007).
[8] Bakre S.V. and Jangid R.S., “Optimum parameters of tuned mass damper for damped main system”, Structural Control and Health Monitoring, 14:448-470(2007).
[9] 鍾立來、吳賴雲、賴勇安、連冠華、黃旭輝,「以結構位移均方最小化作調諧質塊阻尼器之最佳設計」,結構工程,第二十六卷,第四期,第31-57頁(2011)。
[10] Soong T.T. and Dargush G.F., Passive Energy Dissipation Systems in Structural Engineering, Wiley, New York(1997).
[11] 甘錫瀅、張敬昌、謝紹松,「細說臺北101高樓」,科學月刊,第三十八卷,第八期,第690-699頁(2003)。
[12] 張民岦,「淺談調諧式質量阻尼器」,中華技術期刊,67期(2005)。
[13] Rainer J.H. and Swallow J.C., “Dynamic behaviour of a gymnasium floor”, Canadian Journal of Civil Engineering, 13(3):270-277(1986).
[14] Cuoco D.A., Thornton C.H. and Velivasakis E.E., “Taming Structural Vibrations”, Civil Engineering, 60:57-59(1990).
[15] Setareh M. and Hanson R., “Tuned Mass Dampers for Balcony Vibration Control”, Journal of Structural Engineering, 118(3):723-740(1992).
[16] Karásek P., Němec P., and Kalný M., “Dynamic behaviour of a steel cable-stayed footbridge damped by TMD”, Proceedings of the European Conference on Structural Dynamics(2005).
[17] Wiesław Fiebig, “Reduction of vibrations of pedestrian bridges using tuned mass dampers (TMD) ”, Archives of Acoustics, 35(2):165-174(2010).
[18] Chang J.C.H. and Soong T.T., “Structural control using active tuned mass dampers”, Journal of Engineering Mechanics, 106:1091-1098(1980).
[19] Aizawa S., Fukao Y., Minewaki S., Hayamizu Y., Abe H. and Haniuda N., “An experimental study on the active mass damper.”, Proceedings of Ninth World Conference on Earthquake Engineering, 5:871-876(1988).
[20] Spencer B.F. and Nagarajaiah S., “State-of-the-art of structural control”, Journal of Structural Engineering, 129:845-856(2003).
[21] Chu S.Y., Soong T.T. and Reinhorn A.M., Active, Hybrid and Semi-Active Structural Control - A Design and Implementation Handbook, Wiley, New York(2005).
[22] Hrovat D., Barak P. and Robins M., “Semi-active versus passive or active tuned mass dampers for structural control”, Journal of Engineering Mechanics, 109:691-701(1983).
[23] Gu M., Chen S.R. and Chang C.C., “Control of wind-induced vibrations of long-span bridges by semi-active lever-type TMD”, Journal of Wind Engineering and Industrial Aerodynamics, 90:111-126(2002).
[24] 林子堯、盧煉元、胡宣德、蘇峰堅,「減震技術於離岸風力發電支承結構之應用研究」,中華民國第十二屆結構工程研討會暨第二屆地震工程研討會,Paper
No. 2313(2014)。
[25] Wang J.F., Lin C.C. and Lian C.H., “Two-stage optimum design of tuned mass dampers with consideration of stroke”, Structural Control and Health Monitoring, 16:55-72(2009).
[26] Lin C.C., Wang J.F., Lien C.H., Chiang H.W. and Lin C.S., “Optimum design and experimental study of multiple tuned mass dampers with limited stroke”, The Journal of the International Association for Earthquake Engineering, 39(14):1631-1651(2010).
[27] 朱世禹、盧煉元、彭政華、簡誌德,「槓桿式勁度可控質量阻尼器於結構減振之研究」,中華民國第十屆結構工程研討會,Paper No.H-172(2010)。
[28] Torczon V., “On the convergence of pattern search algorithms”, SIAM Journal on Optimization, 7(1):1-25(1997).
[29] “Genetic Algorithm and Direct Search Toolbox User’s Guide”, The MathWorks, Inc.(2004).
[30] 內政部營建署,「建築物耐風設計規範及解說」(2006)。
[31] “Location of Taipei 101's largest tuned mass damper”, Retrieved June 27, 2017, form “Tuned mass damper” on Wikipedia Web site : ( http://en.wikipedia.org/wiki/Tuned_mass_damper ).
[32] “ Tuned mass damper on display in Taipei 101”, Retrieved June 27, 2017, form “Taipei 101” on Wikipedia Web site: ( https://en.wikipedia.org/wiki/Taipei_101 ).
[33] 「台北101的阻尼器」,2017年6月27日擷取自維基百科網站「台北101」,網址:(https://zh.wikipedia.org/wiki/%E5%8F%B0%E5%8C%97101 )。
[34] 「觀景台-風阻尼球-結構介紹」,2017年6月27日擷取自台北101官方網站,網址 : ( http://www.taipei-101.com.tw/observatory-damper.aspx#SCROLL2 )。
[35] 鍾立來,「結構主動控制講義」,國立台灣大學土木工程研究所(2008)。
[36] 鍾立來、吳賴雲、賴勇安、連冠華、顧丁與,「應用相位控制原理於調諧質塊阻尼器最佳化」,國家地震工程研究中心報告(2011)。
[37] 洪維恩,「Matlab7程式設計」,旗標出版有限公司(2011)。
[38] William J.Palm III、張智星,「MATLAB在工程上的應用(第三版)」,美商麥格羅.希爾國際股份有限公司 台灣分公司(2011)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top