跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃聖曄
研究生(外文):Huang, Sheng-Yeh
論文名稱:基於子空間追蹤之IEEE 802.11p通道估計
論文名稱(外文):Subspace-Tracking Channel Estimation for IEEE 802.11p
指導教授:林大衛林大衛引用關係
指導教授(外文):Lin, David W.
口試委員:桑梓賢簡鳳村
口試委員(外文):Sang,Tzu-HsienChien, Feng-Tsun
口試日期:2017-09-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:45
中文關鍵詞:車用網路正交頻分多工通道估計無線通訊
外文關鍵詞:Vehicular communicationOFDMChannel estimationWireless communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們根據電機電子工程師學會(IEEE)為車用網路制定的標準IEEE 802.11p,討論子空間追蹤(subspace-tracking)下行通道估計在IEEE 802.11p系統下的效能。並且使用MATLAB進行通道估計之模擬。
我們將子空間追蹤通道估計法應用在導頻(pilot)子載波的最小平方估計上,藉此增加通道估計的精度,再將導頻子載波的通道估計結果內差,得到對應符號(symbol)的通道估計。在子空間追蹤通道估計法中,我們將通道頻率響應參數化成延遲矩陣(delay matrix)以及振幅向量(amplitude vector)的乘積。由於這兩種參數有不同的時變特性,因此我們分別使用子空間追蹤以及最小均方法來估測兩者。我們利用加性高斯白雜訊 (AWGN) 通道以及瑞雷衰落通道(Rayleigh fading channel)來驗證此方法在IEEE 802.11p系統下的效能。
在本篇論文中,我們首先介紹IEEE 802.11p的系統架構以及車用網路的應用情境,接著描述我們採用的通道估測方法,然後簡介目前常見的通道估計方法,最後在不同傳輸環境下模擬和實作並討論其效能。
In this thesis, we study downlink channel estimation based on the IEEE 802.11p system designed for vehicular communications. We investigate the performance of subspace-tracking channel estimation method in a IEEE 802.11p downlink system. And we simulate the channel estimation method with MATLAB.
We use subspace-tracking channel estimation method as an intermediate step after obtaining the least-squares (LS) estimate over the pilot subcarriers, whose purpose is to increase the accuracy of the estimate over the pilot subcarriers. And this preliminary estimate is interpolated/smoothed over the entire frequency-time grid to obtain the channel estimate of the corresponding symbol. In subspace-tracking channel estimator, we parameterize the channel frequency response into the multiplication of delay matrix and amplitude vector. Since the temporal variation characteristic of these two parameters are different, we use subspace-tracking and least mean square (LMS) methods to estimate them respectively. We show the performance of subspace-tracking estimator in additive white Gaussian noise (AWGN) channel and Rayleigh fading channel for IEEE 802.11p system.
In this thesis, we first introduce the system structure of IEEE 802.11p standard. Then we describe the channel estimation method we use. Next, we introduce the common channel estimators for IEEE 802.11p system. Finally, we do the simulation and discuss the performance in each transmission condition.
1 Introduction 1
1.1 Channel Estimation Problem in IEEE 802.11p . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Overview of the IEEE 802.11p Standard 4
2.1 The IEEE 802.11p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Frequency Band Allocation . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Signal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Subspace-Based Channel Estimation 10
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Channel Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 The Subspace-Tracking Estimator . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 Subspace Tracker and Rank Estimator . . . . . . . . . . . . . . . . . 13
iv
3.3.2 Amplitude Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Benchmark Estimators and Simulation Results 22
4.1 Benchmark Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.1 Block-Type Least Square Estimator (BLS) . . . . . . . . . . . . . . . 22
4.1.2 Comb-Type Least Square Estimator (CLS) . . . . . . . . . . . . . . . 23
4.1.3 Constructed Data Pilot Estimator (CDP) . . . . . . . . . . . . . . . 23
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Channel Estimation with AWGN Channel . . . . . . . . . . . . . . . 24
4.2.2 Channel Estimation with Rayleigh Fading Channels . . . . . . . . . . 26
4.2.3 Channel Estimation with Rayleigh Fading Channels under Higher-
Order Modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Conclusion and Potential Future Work 41
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Potential Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Bibliography 43
[1] IEEE Standard for Information Technology | Telecommunications and Information
Exchange Between Systems | Local and metropolitan area networks |Specic require-
ments | Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specications | Amendment 6: Wireless Access in Vehicular Environments.
IEEE Std. 802.11p-2010, Jul. 2010.
[2] IEEE Standard for Information Technology | Telecommunications and Information
Exchange Between Systems | Local and Metropolitan area Networks |Specic Re-
quirements | Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specications. IEEE Std. 802.11-1997, Nov. 18, 1997.
[3] Farooq Khan, LTE for 4G Mobile Broadband: Air Interface Technologies and Perfor-
mance. Cambridge University Press, 2009.
[4] Supplement to IEEE Standard for Information Technology | Telecommunications and
Information Exchange Between Systems | Local and Metropolitan area Networks |
Specic Requirements | Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specications: High-Speed Physical Layer in the 5 GHz Band.
IEEE Std. 802.11a-1999, Sep. 1999.
[5] H. Hartenstein and K. P. Laberteaux, \A tutorial survey on vehicular ad hoc networks,"
IEEE Commun. Mag., vol. 46, no. 6, pp. 164{171, Jun. 2008.
[6] L. Yang and F. Wang, "Driving into intelligent spaces with pervasive computing and
communications," IEEE Intell. Syst., vol. 22, no. 1, pp. 12{15, Jan./Feb. 2007.
[7] F. Qu, F. Wang, and L. Yang, \Intelligent transportation spaces: Vehicles, trac,
communications, and beyond," IEEE Commun. Mag., vol. 48, no. 11, pp. 136{142,
Nov. 2010.
[8] Z. Zhao, X. Cheng, M. Wen, B. Jiao, and C. X. Wang, \Channel estimation schemes
for IEEE 802.11p Standard," IEEE Intell. Syst., vol. 5, no. 4, pp. 38{49, winter 2013.
[9] J. A. Fernandez, D. D. Stancil, and F. Bai,\"Dynamic channel equalization for IEEE
802.11p waveforms in the vehicle-to-vehicle channel," in 48th Annual Allerton Confer-
ence on Communication, Control, and Computing, Allerton, IL, 2010, pp. 542{551.
[10] L. Bernado, N. Czink, T. Zemen and P. Belanovic, \Physical layer simulation results
for IEEE 802.11p using vehicular non-stationary channel model," in IEEE International
Conference on Communications Workshops, Capetown, 2010, pp. 1{5.
[11] C. F. Mecklenbrauker, A. F. Molisch, J. Karedal, F. Tufvesson, A. Paier, L. Bernado,
T. Zemen, O. Klemp, and N. Czink, \Vehicular channel characterization and its implications
for wireless system design and performance," Proc. IEEE, vol. 99, no. 7, pp.
1189{1212, Jul. 2011.
[12] Y. Li and L. J. Cimini, \Bounds on the interchannel interference of OFDM in timevarying
impairments," IEEE Trans. Commun., vol. 49, no. 3, pp. 401{404, Mar. 2001.
[13] O. Simeone, Y. Bar-Ness, and U. Spagnolini, \Pilot-based channel estimation for OFDM
systems by tracking the delay-subspace," IEEE Trans. Commun., vol. 3, no. 1, pp. 315{
325, Jan. 2004.
[14] P. Strobach, \Low-rank adaptive lters," IEEE Trans. Signal Process., vol. 44, no. 12,
pp. 2932{2947, Dec 1996.
[15] W. Y. Lin, M. W. Li, K. C. Lan, and C. H. Hsu,\A comparison of 802.11 a and 802.11
p for V-to-I communication: A measurement study," In Quality, Reliability, Security
and Robustness in Heterogeneous Networks., Springer, vol. 74, 2011, pp. 559{570.
[16] ETSI, Intelligent Transport Systems (ITS); Radiocommunications Equipment Operating
in the 5 855 MHz to 5 925 MHz Frequency band; Harmonized EN Covering Essential
Requirements of Article 3.2 of the R&TTE Directive. Draft ETSI EN 302 571 V0.0.2,
Dec 2007.
[17] G. W. Stewart, \Methods of simultaneous iteration for calculating eigenvectors of matrices,"
in J. H. Miller, ed., Topics in Numerical Analysis II, New York: Academic,
1975, pp. 169{185.
[18] V. Shivaldova, "Implementation of IEEE 802.11 p physical layer model in SIMULINK,"
in na, 2010
[19] C. Wei, and D. Lin, \A decision-directed channel estimator for OFDM-based bursty
vehicular communication," IEEE Trans. Vehicular Technology, vol. 66, no. 6, pp. 4938{
4953, Jun. 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊