|
[1] Laboratory, L. L. N., 2016, "Energy, Water, and Carbon Informatics," https://flowcharts.llnl.gov/. [2] S. Rahman, 2003, "What is it and where can we find it?," Power and Energy Magazine, pp. 30-37. [3] Lai, C.-C., Chang, W.-C., Hu, W.-L., Wang, Z. M., Lu, M.-C., and Chueh, Y.-L., 2014, "A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO x core–shell nanoparticles," Nanoscale, 6(9), pp. 4555-4559. [4] Medrano, M., Gil, A., Martorell, I., Potau, X., and Cabeza, L. F., 2010, "State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies," Renewable and Sustainable Energy Reviews, 14(1), pp. 56-72. [5] Kearney, D., Herrmann, U., Nava, P., Kelly, B., Mahoney, R., Pacheco, J., Cable, R., Potrovitza, N., Blake, D., and Price, H., 2003, "Assessment of a molten salt heat transfer fluid in a parabolic trough solar field," Journal of solar energy engineering, 125(2), pp. 170-176. [6] Sharma, S. D., and Sagara, K., 2005, "Latent heat storage materials and systems: a review," International Journal of Green Energy, 2(1), pp. 1-56. [7] Jegadheeswaran, S., and Pohekar, S. D., 2009, "Performance enhancement in latent heat thermal storage system: a review," Renewable and Sustainable Energy Reviews, 13(9), pp. 2225-2244. [8] Sharma, A., Tyagi, V., Chen, C., and Buddhi, D., 2009, "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable energy reviews, 13(2), pp. 318-345. [9] Steinmann, W.-D., and Tamme, R., 2008, "Latent heat storage for solar steam systems," Journal of Solar Energy Engineering, 130(1), p. 011004. [10] Prakash, J., Garg, H., and Datta, G., 1985, "A solar water heater with a built-in latent heat storage," Energy conversion and management, 25(1), pp. 51-56. [11] Velraj, R., Seeniraj, R., Hafner, B., Faber, C., and Schwarzer, K., 1999, "Heat transfer enhancement in a latent heat storage system," Solar energy, 65(3), pp. 171-180. [12] Farid, M. M., Khudhair, A. M., Razack, S. A. K., and Al-Hallaj, S., 2004, "A review on phase change energy storage: materials and applications," Energy conversion and management, 45(9), pp. 1597-1615. [13] Hawlader, M., Uddin, M., and Khin, M. M., 2003, "Microencapsulated PCM thermal-energy storage system," Applied energy, 74(1), pp. 195-202. [14] Cingarapu, S., Singh, D., Timofeeva, E. V., and Moravek, M. R., 2014, "Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage," International Journal of Energy Research, 38(1), pp. 51-59. [15] Eastman, J. A., Choi, S., Li, S., Yu, W., and Thompson, L., 2001, "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles," Applied physics letters, 78(6), pp. 718-720. [16] Masuda, H., Ebata, A., and Teramae, K., 1993, "Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles." [17] Chandrasekar, M., Suresh, S., and Bose, A. C., 2010, "Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al 2 O 3/water nanofluid," Experimental Thermal and Fluid Science, 34(2), pp. 210-216. [18] Li, S., and Eastman, J., 1999, "Measuring thermal conductivity of fluids containing oxide nanoparticles," J. Heat Transf, 121(2), pp. 280-289. [19] Wang, X., Xu, X., and S. Choi, S. U., 1999, "Thermal conductivity of nanoparticle-fluid mixture," Journal of thermophysics and heat transfer, 13(4), pp. 474-480. [20] Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., and Wu, Q., 2002, "Thermal conductivity enhancement of suspensions containing nanosized alumina particles," Journal of Applied Physics, 91(7), pp. 4568-4572. [21] Murshed, S., Leong, K., and Yang, C., 2005, "Enhanced thermal conductivity of TiO 2—water based nanofluids," International Journal of Thermal Sciences, 44(4), pp. 367-373. [22] Hong, T.-K., Yang, H.-S., and Choi, C., 2005, "Study of the enhanced thermal conductivity of Fe nanofluids," Journal of Applied Physics, 97(6), p. 064311. [23] Namburu, P., Kulkarni, D., Dandekar, A., and Das, D., 2007, "Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids," Micro & Nano Letters, 2(3), pp. 67-71. [24] Lu, M.-C., and Huang, C.-H., 2013, "Specific heat capacity of molten salt-based alumina nanofluid," Nanoscale research letters, 8(1), p. 292. [25] Shin, D., and Banerjee, D., 2011, "Enhanced specific heat of silica nanofluid," Journal of heat transfer, 133(2), p. 024501. [26] Ho, M. X., and Pan, C., 2014, "Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity," International Journal of Heat and Mass Transfer, 70, pp. 174-184. [27] Hong, Y., Wu, W., Hu, J., Zhang, M., Voevodin, A. A., Chow, L., and Su, M., 2011, "Controlling supercooling of encapsulated phase change nanoparticles for enhanced heat transfer," Chemical Physics Letters, 504(4), pp. 180-184. [28] Tang, X., Li, W., Shi, H., Wang, X., Wang, J., and Zhang, X., 2013, "Fabrication, characterization, and supercooling suppression of nanoencapsulated n-octadecane with methyl methacrylate–octadecyl methacrylate copolymer shell," Colloid and Polymer Science, 291(7), pp. 1705-1712. [29] Yamagishi, Y., Sugeno, T., Ishige, T., Takeuchi, H., and Pyatenko, A. T., "An evaluation of microencapsulated PCM for use in cold energy transportation medium," Proc. Energy Conversion Engineering Conference, 1996. IECEC 96., Proceedings of the 31st Intersociety, IEEE, pp. 2077-2083. [30] Lin, C., Lai, Y., and Liu, S., 2001, "Effect of the surface roughness of sulfuric acid-anodized aluminum mold on the interfacial crystallization behavior of isotactic polypropylene," Journal of adhesion science and technology, 15(8), pp. 929-944. [31] Wagner, M., and Widmann, G., 2009, Thermal analysis in practice, Mettler-Toledo. [32] Kostic, M., and Simham, K. C., "Computerized, transient hot-wire thermal conductivity (HWTC) apparatus for nanofluids," Proc. Proceedings of the 6th WSEAS International Conference on HEAT and MASS TRANSFER (HMT’09), Citeseer, pp. 71-78. [33] Bartzsch, H., Glöß, D., Böcher, B., Frach, P., and Goedicke, K., 2003, "Properties of SiO 2 and Al 2 O 3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering," Surface and Coatings Technology, 174, pp. 774-778. [34] Haarman, J., 1971, "A contribution to the theory of the transient hot-wire method," Physica, 52(4), pp. 605-619. [35] Healy, J., De Groot, J., and Kestin, J., 1976, "The theory of the transient hot-wire method for measuring thermal conductivity," Physica B+ C, 82(2), pp. 392-408. [36] Nagasaka, Y., and Nagashima, A., 1981, "Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method," Journal of Physics E: Scientific Instruments, 14(12), p. 1435. [37] Carslaw, H. S., and Jaeger, J. C., 1959, "Conduction of heat in solids," Oxford: Clarendon Press, 1959, 2nd ed., 1. [38] Serway, R. A., and Jewett, J. W., 1998, Principles of physics, Saunders College Pub. Fort Worth, TX. [39] Coleman, H. W., and Steele, W. G., 1989, "Experimentation and uncertainty analysis for engineers. John Wiley & Sons," New York. [40] Limited, C. R., 2002, "Titanium Dioxide - Titania ( TiO2)," http://www.azom.com/properties.aspx?ArticleID=1179. [41] Lucideon, 2001, "Alumina - Aluminium Oxide - Al2O3 - A Refractory Ceramic Oxide," http://www.azom.com/article.aspx?ArticleID=52. [42] Chang, C.-C., 2016, "Influence of Different Oxide Shells on Phase Change Behavior of Encapsulated Zn Microparticles,"M.S. thesis, National Tsing Hua University. [43] Chu, Y.-d., 2015, "Specific Heat Capacity and Thermal Conductivity of Molten Salt Doped with Micro and/or Nano Particles,"M.S. Thesis, National Chiao Tung University. [44] Hoffman, J. D., and Weeks, J. J., 1962, "Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene," J Res Natl Bur Stand A, 66(1), pp. 13-28. [45] Nieto de Castro, C., Li, S., Nagashima, A., Trengove, R., and Wakeham, W., 1986, "Standard reference data for the thermal conductivity of liquids," Journal of physical and chemical reference data, 15(3), pp. 1073-1086. [46] Santini, R., Tadrist, L., Pantaloni, J., and Cerisier, P., 1984, "Measurement of thermal conductivity of molten salts in the range 100–500 C," International journal of heat and mass transfer, 27(4), pp. 623-626. [47] Perkins, R., Roder, H., and de Castro, C. N., 1991, "A high-temperature transient hot-wire thermal conductivity apparatus for fluids," Journal of research of the National Institute of Standards and Technology, 96(3), p. 247. [48] de Castro, C. N., Perkins, R., and Roder, H., 1991, "Radiative heat transfer in transient hot-wire measurements of thermal conductivity," International journal of thermophysics, 12(6), pp. 985-997. [49] Wang, X.-Q., and Mujumdar, A. S., 2007, "Heat transfer characteristics of nanofluids: a review," International journal of thermal sciences, 46(1), pp. 1-19. [50] Myers, P. D., Alam, T. E., Kamal, R., Goswami, D., and Stefanakos, E., 2016, "Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer," Applied Energy, 165, pp. 225-233. [51] Zhang, Z., Yuan, Y., Ouyang, L., Sun, Q., Cao, X., and Alelyani, S., 2017, "Enhanced thermal properties of Li2CO3–Na2CO3–K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems," Journal of Thermal Analysis and Calorimetry, 128(3), pp. 1783-1792. [52] Silverman, M., and Engel, J., 1977, "Survey of technology for storage of thermal energy in heat transfer salt," Oak Ridge National Lab., Tenn.(USA). [53] Tufeu, R., Petitet, J., Denielou, L., and Le Neindre, B., 1985, "Experimental determination of the thermal conductivity of molten pure salts and salt mixtures," International journal of thermophysics, 6(4), pp. 315-330. [54] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., 2008, "Superior thermal conductivity of single-layer graphene," Nano letters, 8(3), pp. 902-907.
|