跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊智勝
研究生(外文):Zhi-Sheng Yang
論文名稱:使用薄膜型小直流鏈電容的變頻器達成永磁同步電動機驅動系統的研製
論文名稱(外文):Implementation of a PMSM Drive System Using Small Film DC-Link Capacitor Based Inverter
指導教授:劉添華
指導教授(外文):Tian-Hua Liu
口試委員:徐國鎧楊勝明楊宗銘楊士進劉添華
口試委員(外文):Kuo-Kai ShyuSheng-Ming YangChung-Ming YoungShih-Chin YangTian-Hua Liu
口試日期:2018-07-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:155
中文關鍵詞:薄膜型小直流鏈電容預測型控制d-q軸電流控制法正轉矩區間控制法阻尼補償控制
外文關鍵詞:small film dc-link capacitordamping compensation controlpositive torque region controld-q axis current controlpredictive control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討薄膜小直流鏈電容變頻器驅動永磁同步電動機系統。首先,研究兩種不同的控制方法,d-q軸電流控制法與正轉矩區間控制法,實現小直流鏈電容變頻器的驅動系統,以便有效提高輸入電源的功率因數。此外,所提的兩種方法可以延伸控速範圍。最後,利用阻尼補償控制來降低輸入電源側電流的諧波量。
為了改善電動機加載性能,本文使用預測型轉速控制器及預測型電流控制器應用於所研製的驅動系統中。實測結果說明預測型控制器具有較比例積分控制器更為優越的性能。
本文中使用數位信號處理器TMS320F2808作為控制核心,達成相關的控制法則,實驗結果驗證本文所提方法的正確性及可行性。
The thesis investigates a small film DC-Link capacitor based inverter driving a permanent magnet synchronous motor. Two control methods, including a d-q current control method and a positive torque region control method, are proposed to realize the small film DC-link capacitor based inverter drive system. The input source power factor is effectively increased. In addition, the adjustable speed range is extended. Finally, a damping compensation control is used to reduce the input current harmonics.
A predictive speed controller and a predictive current controller are used to improve transient responses and load responses. Experimental results show the predictive controllers provide better performance than the PI controllers.
A digital signal processor, TMS320F2808, is used as the control center to execute the relative control algorithms. Experimental results validate the correctness and feasibility of the proposed methods.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
符號索引 XII
第一章 緒論 1
1.1動機 1
1.2文獻回顧 2
1.3目的 6
1.4大綱 7
第二章 內藏式永磁同步電動機 8
2.1簡介 8
2.2結構及特性 8
2.3數學模型 12
第三章 驅動系統介紹 21
3.1簡介 21
3.2永磁同步電動機驅動系統 23
3.3變頻器的基本原理 24
3.4空間向量脈波寬度調變 28
第四章 薄膜型小直流鏈電容變頻器的驅動方法 32
4.1簡介 32
4.2基本原理 33
4.3 d-q軸電流控制法 38
4.4正轉矩區間控制法 40
4.5阻尼補償控制 45
第五章 控制器設計 53
5.1簡介 53
5.2基本原理 55
5.3預測型速度控制器 58
5.4預測型電流控制器 68
第六章 系統研製 79
6.1簡介 79
6.2硬體電路 81
6.2.1變頻器電路 81
6.2.2閘極驅動電路 82
6.2.3電源電路 82
6.2.4電流偵測電路 83
6.2.5電壓偵測電路 84
6.2.6橋式整流電路 85
6.2.7編碼器電路 86
6.2.8數位訊號處理器 86
6.3軟體程式設計 87
6.3.1主程式 88
6.3.2中斷服務程式 89
第七章 實測結果 91
7.1簡介 91
7.2實測 92
第八章 結論及未來研究方向 128
參考文獻 129
[1]台電電價表https://www.taipower.com.tw/upload/29/2018013018264753954.pdf
[2]J. J. Guedes, M. F. Gastoldi, and A. Goedtel, “Temperature influence snalysis
on parameter estimation of induction motors using,” IEEE Latin America
Transactions, vol. 14, no. 9, pp. 4097-4105, Sep. 2016.
[3]S. O. Kwon, J. J. Lee, B. H. Lee, J. H. Kim, K. H. Ha, and J. P. Hong, “Loss
distribution of three-phase induction motor and BLDCmotor according to core
materials and operating,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp.
4740-4743, Oct. 2009.
[4]M. N. Ibrahim, P. Sergeant, and E. E. M. Rashad, “Combined star-delta windings
to improve synchronous reluctance motor performance,” IEEE Transactions on
Energy Conversion, vol. 31, no. 4, pp. 1479-1487, Dec. 2016.
[5]H. C. Liu, I. G. Kim, Y. J. Oh, J. Lee, and S. C. Go, “Design of permanent
magnet-assisted synchronous reluctance motor for maximized Back-EMF and torque
ripple reduction,” IEEE Transactions on Magnetics, vol. 53, no. 6, June 2017.
[6]Y. L. Ying, S. Huang, and D. Xu, “An high speed low noise rotor topology for
EV HEV PMSM,” CES Transactions on Electrical Machines and Systems, vol. 1, no.
3, pp. 354-359, Dec. 2017.
[7]T. L. Chern, and T. M. Huang, “Shunt semi-active power factor correction
circuit for permanent magnet synchronous motor driver,” IET Power Electronics,
vol. 7, no. 10, pp. 2636-2646, Apr. 2014.
[8]V. Bist, and B. Singh, “PFC cuk converter-fed BLDC motor drive,” IEEE
Transactions on Power Electronics, vol. 30, no. 2, pp. 871-887, Feb. 2015.
[9]Y. Son, and J. I. Ha, “Discontinuous grid current control of motor drive
system with single-phase diode rectifier and small DC-link capacitor,” IEEE
Transactions on Power Electronics, vol. 32, no. 2, pp. 1324-1334, Feb. 2017.
[10]H. C. Chang, and C. M. Liaw, “Development of a compact switched-reluctance
motor drive for EV propulsion with Voltage-Boosting and PFC charging
capabilities,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp.
3198-3215, Sep. 2009.
[11]V. Bist, and B. Singh, “An adjustable-speed PFC bridgeless Buck–Boost
converter-fed BLDC motor drive,” IEEE Transactions on Industrial Electronics,
vol. 61, no. 6, pp. 2665-2677, June 2014.
[12]J. I. Itoh, and N. Ohtani, “Square-wave operation for a single-phase-PFC
three-phase motor drive system without a reactor,” IEEE Transactions on
Industry Applications, vol. 47, no. 2, pp. 805-811, Mar. 2011.
[13]B. Akin, M. Bhardwaj, and S. Choudhury, “An integrated implementation of two-
phase interleaved PFC and dual motor drive using single MCU with CLA,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2082-2091, Nov.
2013.
[14]B. Singh, and V. Bist, “A BL-CSC converter-fed BLDC motor drive with power
factor correction,” IEEE Transactions on Industrial Electronics, vol. 62, no.
1, pp. 172-183, Jan. 2015.
[15]H. S. Jung, S. J. Chee, S. K. Sul, Y. J. Park, and W. K. Kim, “Control of
three-phase inverter for AC motor drive with small DC-link capacitor fed by
single-phase AC source,” IEEE Transactions on Industry Applications, vol. 50,
no. 2, pp. 1074-1081, Mar./Apr. 2014.
[16]K. Abe, H. Haga, K. Ohishi and Y. Yokokura, “Fine current harmonics reduction
method for electrolytic capacitor-less and Inductor-Less inverter based on
motor torque control and fast voltage feedforward control for IPMSM,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1071-1080, Feb.
2017.
[17]K. Inazuma, H. Utsugi, K. Ohishi, and H. Haga, “High-power-factor single-
phase diode rectifier driven by repetitively controlled IPM motor,” IEEE
Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4427-4437, Oct.
2013.
[18]H. K. S. Ransara, U. K. Madawala, and T. H. Liu, “Buck converter based model
for a brushless DC motor drive without a DC link capacitor,” IET Power
Electronics, vol. 8, no. 4, pp. 628-635, Sep. 2015.
[19]N. Zhao, G. Wang, D. Xu, L. Zhu, G. Zhang, and J. Huo, “Inverter power
control based on DC-link voltage regulation for IPMSM drives without
electrolytic capacitors,” IEEE Transactions on Power Electronics, vol. 33,
no. 1, pp. 558-571, Jan. 2018.
[20]N. Zhao, G. Wang, D. Xu, and D. Xiao, “An active damping control method for
reduced DC-link capacitance IPMSM drives,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 3, pp. 2057-2068, Mar. 2018.
[21]Y. Chen, T. H. Liu, C. F. Hsiao, and C. K. Lin, “Implementation of adaptive
inverse controller for an interior permanent magnet synchronous motor
adjustable speed drive system based on predictive current control,” IET
Electric Power Applications, vol. 9, no. 1, pp. 60-70, Jan. 2015.
[22]X. Zhang, L. Sun, K. Zhao and L. Sun, “Nonlinear speed control for PMSM
system using sliding-mode control and disturbance compensation techniques,”
IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1358-1365, Mar.
2013.
[23]T. H. Liu, and M. T. Lin, “A fuzzy sliding-mode controller design for a
synchronous reluctance motor drive,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 32, no. 3, pp. 1065-1076, July 1996.
[24]D. F. Chan, and T. H. Liu, “Optimal controller design for a matrix converter
based surface mounted PMSM drive system,” IEEE Transactions on Power
Electronics, vol. 18, no. 4, pp. 1034-1046, July 2003.
[25]P. Mattavelli, L. Tubiana, and M. Zigliotto, “Torque-Ripple reduction in PM
synchronous motor drives using repetitive current control,” IEEE Transactions
on Power Electronics, vol. 20, no. 6, pp. 1423-1431, Nov. 2005.
[26]M. Tang, A. Gaeta, A. Formentini, and P. Zanchetta, “A fractional delay
variable frequency repetitive control for torque ripple reduction in PMSMs,”
IEEE Transactions on Industry Applications, vol. 53, no. 6, pp. 5553-5562,
Nov. 2017.
[27]Z. Tang, and B. Akin, “Suppression of dead-time distortion through revised
repetitive controller in PMSM drives,” IEEE Transactions on Energy
Conversion, vol. 32, no. 3, pp. 918-930, Sep. 2017.
[28]T. Su, S. Hattori, M. Ishida and T. Hori, “Suppression control method for
torque vibration of AC motor utilizing repetitive controller with fourier
transform,” IEEE Transactions on Industry Applications, vol. 38, no. 5, pp.
1043-1050, Sep./Oct. 2002.
[29]J. L. Chen, and T. H. Liu, “Implementation of a predictive controller for a
sensorless interior permanent-magnet synchronous motor drive system,” IET
Electric Power Applications, vol. 6, no. 8, pp. 513-525, Sep. 2012
[30]W. C. Wang, T. H. Liu, and Y. Syalfudin, “Model predictive controller for a
micro-PMSM-based five-finger control system,” IEEE Transactions on Industrial
Electronics, vol. 63, no. 6, pp. 3666-3676, June 2016.
[31]J. L. Shi, T.H. Liu, and Y. C. Chang, “Adaptive controller design for a
sensorless IPMSM drive system with a maximum torque control,” IEE Proceedings
- Electric Power Applications, vol. 153, no. 6, pp. 823-833, Nov. 2006.
[32]S. Kim, Y. D. Yoon, S. K. Sul, and K. Ide , “Maximum torque per ampere (MTPA)
control of an IPM machine based on signal injection considering inductance
saturation,” IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 488-
497, Jan. 2013.
[33]Y. A. R. I. Mohamed, and T. K. Lee, “Adaptive self-tuning MTPA vector
controller for IPMSM drive system,” IEEE Transactions on Energy Conversion,
vol. 21, no. 3, pp. 636-644, Sep. 2006.
[34]C. B. Butt, M. A. Hoque, and M. A. Rahman, “Simplified fuzzy-logic-based MTPA
speed control of IPMSM drive,” IEEE Transactions on Industry Applications,
vol. 40, no. 6, pp. 1529-1535, Nov./Dec. 2004.
[35]M. Hinkkanen, H. A. A. Awan, Z. Qu, T. Tuovinen, and F. Briz, “Current
control for synchronous motor drives direct discrete-time pole-placement
design,” IEEE Transactions on Industry Applications, vol. 52, no. 2, pp.
1530-1541, Mar./Apr. 2016.
[36]X. Cao, and L. Fan, “Real-time PI controller based on pole assignment theory
for permanent magnet synchronous motor,” IEEE ICAL-2008, pp. 211-215, Sep.
2008.
[37]H. Lamsahel, and P. Mutschler, “Permanent magnet drives with reduced dc-link
capacitor for home appliances,” IEEE IECON-2009, pp. 725-730, Nov. 2009.
[38]B. G. Gu, “Study of IPMSM interturn faults Part I development and analysis of
models with series and parallel winding connections,” IEEE Transactions on
Power Electronics, vol. 31, no. 8, pp. 5931-5943, Aug. 2016.
[39]J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New
York, 2002.
[40]L. P. Wang, Model Predictive Control System Design and Implementation Using
MATLAB®, Springer, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top