|
[1] P. Liu, D. F. Glas, T. Kanda, and H. Ishiguro, “Data-driven HRI: learning social behaviors by example from human–human interaction,” IEEE Trans. Robotics, vol. 32, no. 4, pp. 988-998, Aug. 2016. [2] J.-S. Park, G.-J. Jang, J.-H. Kim, and S.-H. Kim, “Acoustic interference cancellation for a voice-driven interface in smart TVs,” IEEE Trans. Consumer Electronics, vol. 59, no. 1, pp. 244-249, Feb. 2013. [3] K. Wang, N. An, B. N. Li, Y. Zhang, and L. Li, “Speech emotion recognition using Fourier parameters,” IEEE Trans. Affective Computing, vol. 6, no. 1, pp. 69-75, Jan-Mar 2015. [4] M. Sun, Y. Li, J. F. Gemmeke, and X. Zhang, “Speech enhancement under low SNR conditions via noise estimation using sparse and low-rank NMF with Kullback-Leibler divergence,'' IEEE Trans. Audio, Speech, Language Process., vol. 23, no. 7, pp. 1233_1242, Jul. 2015. [5] I.-J. Ding and S.-K. Lin, “Performance improvement of Kinect software development kit–constructed speech recognition using a client–server sensor fusion strategy for smart human–computer interface control applications,” IEEE Access, vol. 5, pp. 4154-4162, 2017. [6] K. Zinchenko, C.-Y. Wu, and K.-T. Song, “A study on speech recognition control for a surgical robot,” IEEE Trans. Ind. Inform., vol. 14, no. 2, pp. 607-617, Apr. 2017. [7] F. C. Ribeiro, R. T. S. Carvalho, P. C. Cortez, V. H. C. D. Albuquerque, and P. P. R. Filho, “Binary neural networks for classification of voice commands from throat microphone,” IEEE Access, vol. 6, pp. 70130-70144, 2018. [8] M. Wang, E. Zhang, and Z. Tang, “Speech enhancement for in-vehicle voice control systems using wavelet analysis and blind source separation,” IEEE Access, vol. 6, pp. 9147-9159, 2018. [9] S. E. Shepstone, Z. H. Tan, S. H. Jensen, “Audio-based granularity-adapted emotion classification,” IEEE Trans. Affective Computing, vol. 9, no. 2, pp. 176-190, Apr-Jun 2018. [10] V. Lostanlen, J. Salamon, M. Cartwright, B. McFee, A. Farnsworth, S. Kelling, and J. P. Bello, “Per-channel energy normalization: Why and how,” IEEE Signal Processing Letters, vol. 26, no. 1, pp. 39-47, Jan. 2019. [11] A H. Poorjam, M. A. Little, J. R. Jensen, and M. G. Christensen, “Quality control in remote speech data collection,” IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 2, pp. 236-243, May 2019. [12] A. Ganapathiraju, J. E. Hamaker, and J. Picone, “Applications of support vector machines to speech recognition,” IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2348-2355, Aug. 2004 [13] H. Kim and B. K. Kim, “Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4771-4779, Sep. 2014. [14] D. Rotondo, V. Puig, F. Nejjari, and J. Romera, “A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3932-3944, Jun. 2015. [15] C.-L. Hwang, W. H. Hung, and Y. Lee, “Tracking design of omnidirectional drive service robot using hierarchical adaptive finite-time control ,” IEEE IECON-2018, Washington D.C. USA, pp. 5680-5685, Oct. 21st -Oct. 23rd , 2018. [16] C.-L. Hwang and John Y. Hung, “Stratified adaptive finite-time tracking control for nonlinear uncertain generalized vehicle systems and its application,” IEEE Trans. Contr. Syst. Technol., vol. 27, no. 3, pp. 1308- 1316, May 2019. [17] R. H. Abiyev, N. Akkaya, and I. Gunsel, “Control of omnidirectional robot using Z-number-based fuzzy system,” IEEE Trans. Syst. Man Cyber.: Syst., to be published, 2019. [18] C.-L. Hwang and Y.-H. Chen, “Fuzzy fixed-time learning control with saturated input, nonlinear switching surface and switching gain to achieve null tracking error,” IEEE Trans. Fuzzy Syst., to be published, 2019. [19] W. He, A. O. David, Z. Yin, and C. Sun, “Neural network control of a robotic manipulator with input deadzone and output constraint,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 46, no. 6, pp. 759-770, Jun. 2016. [20] N. Wang, C. Qian, J.-C. Sun, and Y.-C. Liu, “Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles,” IEEE Trans. Contr. Syst. Technol., vol. 24 , no. 4, pp. 1454-1462, Jul. 2016. [21] Y. Wang, L. Gu, Y. Xu, and X. Cao, “Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6194- 6204, Oct. 2016. [22] M. Van, S. S. Ge, and H. Ren, “Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control,” IEEE Trans. Cybern., vol. 47, no. 7, pp. 1681-1693, Jul. 2017. [23] J. Yu, L. Zhao, H. Yu, C. Lin, and W. Dong, “Fuzzy finite-time command filtered control of nonlinear systems with input saturation,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 2378-2387, Aug. 2018. [24] C. Yang, Y. Jiang, W. He, J. Na, Z. Li, and B. Xu, “Adaptive parameter estimation and control design for robot manipulators with finite-time convergence,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8112- 8123, Oct. 2018. [25] T. Li, R. Zhao, C. L. P. Chen, L. Fang, and C. Liu, “Finite-time formation control of under-actuated ships using nonlinear sliding mode control,” IEEE Trans. Cybern., vol. 48, no. 11, pp. 3243-253, Nov. 2018. [26] C. Yang, Y. Jiang, J. Na, Z. Li, L. Cheng, and C.-Y. Su, “Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 574-584, Mar. 2019. [27] L. Zhao, J. Yu, C. Lin, and Y. Ma, “Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping,” IEEE Trans. Syst. Man & Cybern.: Syst., to be published, 2019. [28] W. Li, Z. Su, and Z. Tan, “A variable-gain finite-time convergent recurrent neural network for time-variant quadratic programming with unknown noises endured,” IEEE Trans. Inform., to be published, 2019. [29] G.-B. Dai and Y-C Liu, “Distributed coordination and cooperation control for networked mobile manipulators,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5065-5074, Jun. 2017. [30] Z. Zuo, Q.-L. Han, B. Ning, X. Ge, and X.-M. Zhang, “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Inform., vol. 14, no. 6, pp. 2322-2334, Jun. 2018. [31] S. Haykin, Neural networks and learn machines, Pearson Edu., Upper Saddle River, NJ, USA, 2009, 3rd ed. [32] A. Rocha and S. K. Goldenstein, “Multiclass from binary: expanding one-versus all, one-versus-one and ECOC-based approaches’, IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 2, pp. 289–302, Mar. 2014. [33] C.-L. Hwang, B. L. Chen, H. H. Huang, H.H., and H.T. Syu, “Hybrid learning model and MMSVM classification for on-line visual imitation of a human with 3-D motions,” Int. J. Robot. Autonomous Syst., vol. 71, pp. 150–165, 2015. [34] S. Anjum, M. S. Sheikh, and D. R. Rotake, “An evolutionary approach for smart wheelchair system,” IEEE ICCSP-2015, pp. 1811-1815, 2015. [35] W. Chung, H. Kim, Y. Yoo, C. Moon, and J. Park, “The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3156–3166, Aug. 2012. [36] L. Li, S. Yan, X. Yu, Y. K. Tan, and H. Li, “Robust multiperson detection and tracking for mobile service and social robots,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 42, no. 5, pp. 1398-1412, Oct. 2012. [37] J. S. Hu, J. J Wang, and D. M. Ho, “Design of sensing system and anticipative behavior for human following of mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1916-1927, Apr. 2014. [38] R. Tasaki, M. Kitazaki, J. Miura, and K. Terashima, “Prototype design of medical round supporting robot “Terapio” IEEE ICRA-2015, pp. 829-834, Seattle, Washington, USA, May 26-30, 2015. [39] H. C. Huang, “SoPC-based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional mobile robots,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1828-1838, Nov. 2013. [40] J. C. L. Barreto S., A. G. S. Conceic˜ao, C. E. T. D´orea, L. Martinez, and E. R. de Pieri, “Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 2, pp. 467-476, Apr. 2014. [41] C.-L. Hwang, “Comparison of path tracking control of a car-like mobile robot with and without motor dynamics,” IEEE/ASME Trans. Mechatronics, vol. 21, no., 4, pp. 1801-1811, Aug. 2016. [42] J. Yuan, F. Sun, and Y. Huang, “Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7665-7675, Dec. 2016. [43] W. Sun, S. Tang, H. Gao, and J. Zhao, “Two time-scale tracking control of nonholonomic wheeled mobile robots,” IEEE Trans. Contr. Syst. Technol., vol. 24, no. 6, pp. 2059-2069, Nov. 2016. [44] S. Aguilera-Marinovic, M. Torres-Torriti, and F. Auat-Cheein, “General dynamic model for skid-steer mobile manipulators with wheel-ground interactions,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 433-444, Feb. 2017. [45] N. Filipe, A. Valverd, and P. Tsiotras, “Pose tracking without linear and angular-velocity feedback using dual quaternions,” IEEE Trans. Aerospace and Electronic Syst., vol. 52, no. 1, pp. 414-422, Feb. 2016. [46] M. Yue, C. An, and Z. Li, “Constrained adaptive robust trajectory tracking for WIP vehicles using model predictive control and extended state observer,” IEEE Trans. Syst. Man and Cybern.: Syst., vol. 48, no. 5, pp. 733-742, May 2018. [47] S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM Journal on Control and Optimization, vol. 38, pp. 751-766, 2000. [48] H. Wang, Z. Man, H. Kong, Y. Zhao, M. Yu, Z. Cao, J. Zheng, and M. T. Do, “Design and implementation of adaptive terminal sliding-mode control on a steer-by-wire equipped road vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5774-5785, Sep. 2016. [49] Y. Wang, L. Gu, Y. Xu, and X. Cao, “Practical tracking control of robot manipulators with continuous fractional- order nonsingular terminal sliding mode,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6194-6204, Oct. 2016. [50] J. J. Rath, M. Defoort, H. R. Karimi, and K. C. Veluvolu, “Output feedback active suspension control with higher order terminal sliding mode,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1392-1403, Feb. 2017. [51] J. Wu, J. Li, G. Zong, and W. Chen, “Global finite-time adaptive stabilization of nonlinearly parametrized systems with multiple unknown control directions,” IEEE Trans. Syst. Man Cyber.: Syst., vol. 47, no. 7, pp. 1405-1414, 2017 Jul. 2017. [52] B. Tian, L. Liu, H. Lu, Z. Zuo, Q. Zong, and Y. Zhang, “Multivariable finite time attitude control for quadrotor UAV: theory and experimentation,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2567-2577, Mar. 2018. [53] Y. Sun, B. Chen, C. Lin, and H. Wang, “Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure,” IEEE Trans. Cyber., to be published, 2018. [54] M. Van, M. Mavrovouniotis, and S. S. Ge, “An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of a robot manipulator,” IEEE Trans. Syst. Man and Cybern.: Syst.: Syst., to be published, 2018. [55] L. Zhao, J. Yu, C. Lin, and Y. Ma, “Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping,” IEEE Trans. Syst. Man Cyber.: Syst., to be published, 2018. [56] S. He, J. Song, and F. Liu, “Robust finite-time bounded controller design of time-delay conic nonlinear systems using sliding mode control strategy,” IEEE Trans. Syst. Man Cyber.: Syst., to be published, 2018. [57] E. Alepis and C. Patsakis, “Monkey says, monkey does: Security and privacy on voice assistants,” IEEE Access, vol. 5, pp. 17841-17851, 2017.
|