跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭義瑞
研究生(外文):Yi-Jui Cheng
論文名稱:考慮真實天氣下之單張霧氣影像能見度增強方法
論文名稱(外文):Efficient Single Hazy Image Visibility Enhancement in Widely Real-World Poor Weather
指導教授:黃士嘉黃士嘉引用關係
口試委員:蔡偉和顏嗣鈞郭斯彥
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:27
中文關鍵詞:Dark channel prior區域亮點色偏
外文關鍵詞:Dark channel priorlocalized lightcolor shift
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在惡劣的天氣環境情況下,如霧、霾和沙塵暴…等等,戶外場景影像的能見度將會被降低,因此時常利用燈源提升視覺的能見度,如駕駛員使用車大燈和街燈被點亮,所以在惡劣的環境下進行拍攝時,時常有區域亮點的問題。另外,如果在沙塵暴的環境下拍攝影像時,其影像會有色偏的現象,這是因為沙塵的大氣粒子吸收特定的光譜所造成的。依照傳統先進的單張霧氣影像修復技術來修復包含區域亮點或色偏的影像時,將無法達到有效地能見度修復,因此我們針對此問題提出一個有效的能見度增強方法。我們方法結合了三個模組,分別為Hybrid Dark Channel Prior模組、色彩分析模組和能見度修復模組。實驗結果證明,經由跟傳統先進的單張霧氣影像修復技術所產生的能見度修復結果相較之下,所提出的方法能有效的提升影像能見度並校正影像的色彩,使其還原場景的原始狀態。

The visibility of images of outdoor scenes will generally become degraded when captured during inclement weather conditions such as haze, fog, sandstorms, and so on. Additionally, localized light sources are common when capturing scenes in these conditions. Drivers often turn on the headlights of their vehicles, and streetlights are often activated. Sandstorms are particularly challenging due to the propensity of atmospheric sand to absorb specific portions of spectrum and thereby cause color-shift problems. Traditional state-of-the-art restoration techniques for hazy images are unable to effectively contend with over-saturation artifacts caused by localized light sources or color-shifts arising from inadequate spectrum absorption. In response, we present a novel and effective haze removal approach to remedy problems caused by localized light sources and color-shifts, and thereby achieve superior restoration results for single hazy images. In order to achieve this, the proposed approach combines the hybrid dark channel prior module, the color analysis module, and the visibility recovery module. Experimental results demonstrate that the proposed haze removal technique can recover scene radiance in single images more effectively than can traditional state-of-the-art haze removal techniques.

中文摘要.....................................i
ABSTRACT....................................ii
誌謝........................................ iii
CONTENTS....................................iv
LIST OF FIGURES.............................v
Chapter 1 INTRODUCTION......................1
Chapter 2 BACKGROUND........................4
2.1 Optical Model...........................4
2.2 Haze Removal Using Dark Channel Prior...5
2.2.1 Dark Channel Prior.................5
2.2.2 Estimating the Transmission Map....6
2.2.3 Soft Matting.......................7
2.2.4 Recovering the Scene Radiance......8
2.3 Discussion..............................8
Chapter 3 PROPOSED METHOD...................12
3.1 Hybrid Dark Channel Prior Module........12
3.2 Color Analysis Module...................14
3.3 Visibility Recovery Module..............15
Chapter 4 EXPERIMENTAL RESULTS..............17
4.1 The Results of Localized Light Sources..17
4.2 The Results of Color Shift Problem......19
4.3 The Haze Removal with a Wide Range of Weather Conditions 22
Chapter 5 CONCLUSIONS.......................25
REFERENCES..................................26


[1]N. K. Kanhere and S. T. Birchfield, “A taxonomy and analysis of camera calibration methods for traffic monitoring applications,” IEEE Trans. Intelligent Transp. Syst., vol. 11, no. 2, pp. 441-452, Jun. 2010.
[2]L. Lee, R. Romano, and G. Stein, “Monitoring activities from multiple video streams: establishing a common coordinate frame,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 758-767, Aug. 2000.
[3]N. Buch, S.A. Velastin, and J. Orwell, “A Review of Computer Vision Techniques for the Analysis of Urban Traffic,” IEEE Trans. Intelligent Transp. Syst., vol. 12, no. 3, pp. 920-939, Sep. 2011.
[4]S. C. Huang, “An Advanced Motion Detection Algorithm with Video Quality Analysis for Video Surveillance Systems,” IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 1, pp. 1-14, Jan. 2011.
[5]F. C. Cheng, S. C. Huang, and S. J. Ruan, “Scene Analysis for Object Detection in Advanced Surveillance Systems using Laplacian Distribution Model,” IEEE Trans. Systems, Man, and Cybernetics -Part C: Applications and Reviews, vol. 41, pp. 589-598, Sep. 2011.
[6]F. C. Cheng, S. C. Huang, and S. J. Ruan, “Illumination-Sensitive Background Modelling Approach for Accurate Moving Object Detection,” IEEE Transactions on Broadcasting, vol. 57, no. 4, pp. 794-801, Dec. 2011.
[7]F. C. Cheng and S. J. Ruan, “Accurate Motion Detection Using a Self-Adaptive Background Matching Framework,” IEEE Trans. Intelligent Transp. Syst., no. 99, pp. 1-9, Nov. 2011.
[8]O. Barinova, V. Lempitsky, and P. Kholi “On Detection of Multiple Object Instances Using Hough Transforms,” IEEE Trans. Pattern Anal. Machine Intell., vol. 34, no. 9, pp. 1773-1784, Sep. 2012.
[9]S. E. Kemeny, R. Panicacci, B. Pain, L. Matthies, and E. R. Fossum, “Multi-resolution image sensor,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 575-583, Aug. 1997.
[10]D. J. Dailey, F.W. Cathey, and S. Pumrin, “An algorithm to estimate mean traffic speed using uncalibrated cameras,” IEEE Trans. Intelligent Transp. Syst., vol. 1, no. 2, pp. 98-107, Jun. 2000.
[11]K. Tan, and J. P. Oakley, “Enhancement of Color Images in Poor Visibility Conditions,” Proc. IEEE Int. Conf. Image. Proc. (ICIP2000), vol. 2, pp. 788-791, Sep. 2000.
[12]S.G. Narasimhan and S.K. Nayar, “Interactive (De)Weathering of an Image using Physical Models,” ICCV Workshop on Color and Photometric Methods in Computer Vision., pp. 1387-1394 Oct, 2003.
[13]J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, and D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graphics., vol. 27, no. 5, pp. 116:1-116:10, Dec. 2008.
[14]Y.Y. Schechner, S.G. Narasimhan, and S.K. Nayar, “Polarization Based Vision Through Haze,” Proc. Applied Optics, special issue: light and color in the open air., vol. 42, no. 3, Jan. 2003.
[15]S.G. Narasimhan and S.K. Nayar, “Contrast Restoration of Weather Degraded Images,” IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 6, pp. 713-724, Jun. 2003.
[16]S.K. Nayar and S.G. Narasimhan, “Vision in Bad Weather,” Proc. Seventh IEEE Int’l Conf. Computer Vision, vol. 2, pp. 820-827, Jun. 1999.
[17]R. Tan, “Visibility in Bad Weather from a Single Image,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, Jun. 2008.
[18]R. Fattal, “Single Image Dehazing,” Proc. ACM SIGGRAPH''08, 2008.
[19]K. He, J. Sun, and X. Tang, ``Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Anal. Machine Intell., vol. 33, no.12, pp. 2341-2353, Dec. 2011.
[20]A. Levin, D. Lischinski, and Y. Weiss, “A Closed Form Solution to Natural Image Matting,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 61-68, 2006.
[21]A. C. Hurlbert, “Formal connections between lightness algorithms,” J. Opt. Soc. Amer. A}, vol. 3, pp. 1684-1693, 1986.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top