跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱柏評
研究生(外文):Po-Ping Chiu
論文名稱:V型環狀衝擊燃燒器之丙烷預混火焰特性研究
論文名稱(外文):Flame Feature of Premixed Propane Flame on a V-Shaped Circular Impinging Burner
指導教授:楊鏡堂楊鏡堂引用關係
指導教授(外文):Jing-Tang Yang
口試日期:2016-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:燃燒器衝擊流場預混丙烷火焰層流火焰粒子影像測速法
外文關鍵詞:BurnerImpinging flamePremixed propane flameLaminar flameParticle image velocimetry (PIV)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文測試自行開發之V型環狀衝擊燃燒器並分析火焰特性及流場結構、驗證新設計優良燃燒性能,分為兩部分進行探討,首先以實驗分析方法探討環狀平面及具V型環狀衝擊結構下丙烷預混火焰之特性,分別改變雷諾數 (Re = 300 ~ 800) 及當量比 (ϕ = 0.7 ~ 3.0),透過量測火焰溫度場及使用粒子影像測速法 (PIV),觀察及計算流場之變化。結果顯示在當量比變化下,可觀察到四種火焰型態在火焰結構以及效能上皆有所差異,其中藍焰 (ϕ = 1.0) 的火焰型態,穩定且受周圍流場影響小,無明顯擾動,溫度性能最佳。與環狀平面燃燒器比較,V型環狀衝擊結構可擴展穩定操作區間,且由溫度分布圖可觀察到V型環狀衝擊燃燒器於出口範圍預熱效應較好,速度場及渦度場量值因衝擊結構及剪應力增強為環狀平面燃燒器之兩倍,由流場可視化也觀察強勁之渦漩結構產生且捲進外圍空氣,使得燃料與助燃劑混合效果增強,再透過分析層流火焰週期性變化,可觀察渦漩結構產生,以及隨其發生之頸縮現象。各方面實驗結果可證明,V型環狀衝擊結構使得流場內聚、火焰間交互作用提升,預熱效應明顯,提升整體燃燒效能。
第二部分則以第一部分實驗結果為基礎,以增強火焰間交互作用為目標,分別調整整體尺寸大小以及衝擊角度 (30度、45度及60度) 進行探討,結果顯示內焰間彼此間隔明顯縮小,當衝擊角度為60度時,溫度表現最好;而當衝擊角度為30度時,其速度及渦度量值皆為最高,渦度場之量值同時受到速度及衝擊角度影響而在不同角度下有所差異,端看使用面向決定何種衝擊角度為佳。藉由本文分析V型環狀衝擊結構對於燃燒流場之影響,以期能建構此燃燒衝擊流場之應用基礎,未來開發同時兼顧燃燒效能及降低環境汙染之新型燃燒載具。
In this work, the innovative burner with v-shaped circular impinging structure was proposed. An experimental study was conducted to investigate the influence of burner structure on the feature of premixed propane flame. The design applied in the burner may reduce the consumption of fuel and improve the performance simultaneously. There are two main sections in this thesis. Firstly, the superior performance was verified through the comparison between v-shaped circular impinging burner and circular planar burner. The v-shaped circular impinging structure was beneficial to the numerous characteristics of combustion. The experimental results exhibited that blue flame (ϕ = 1.0) was the most stable flame type in the four types identified and was less influenced by surrounding flow filed from the high-resolution pictures took. This mechanism of impinging flame extended the stable operating region and effectively reduced the limit of blow-out flame and lift-off flame happening because of the preheated effect. Based on distribution of the temperature field, the high temperature zone was more concentrated and around 50 ℃ higher than circular planar burner. The v-shaped impinging structure in the rectangular outlet region enhanced the speed of chemical reaction by high temperature and made the unburned gas effectively blend in the central region. Furthermore, the computed results of non-intrusive diagnostics (PIV) revealed that the velocity and vorticity of v-shaped circular impinging burner were dramatically strengthened double compared to circular planar burner due to thermal buoyancy and shear stress. The mixing of unburned gas was proved by computing the horizontal velocity. There were also numerous vortices observed in the pictures of visualization, they swirled the outside air to the combustion field and increased the mixing of fuels and oxidants. According to the theoretical analyses and the experimental results discussed above, the increased flame interaction caused by the impinging structure takes several advantages to flame feature relative to circular planar burner.
Based on the results of the first section, the v-shaped circular impinging burner was redesigned and discussed in the second section. The overall size was minified to reduce the interval between flames, and the angle of impinging was changed to find a suitable angle used in v-shaped circular impinging structure. The results show that the highest temperature was measured when the impinging angle was 60 degree. However, the highest magnitudes of velocity and vorticity were measured when the impinging angle was 30 degree. It seems possible that these results are due to different angles of impinging and chemical reaction. Therefore, what the angle of impinging should be chosen is dependent on the objective of use. This research may be the significant reference for the industrial and domestic applications using v-shaped circular impinging structure.
目錄
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖表目錄 viii
符號說明 xii
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 1
第二章 文獻回顧 3
2.1 基本燃燒特性 4
2.1.1 火焰型態與當量比 4
2.1.2 火焰傳遞速度 5
2.2 燃燒量測技術 8
2.2.1 流場量測 8
2.2.2 粒子影像測速法 8
2.2.3 化學螢光法 9
2.2.4 同步量測 12
2.3 燃燒器 12
2.3.1 二次空氣 12
2.3.2 流場結構 13
2.3.3 衝擊結構 14
2.3.4 預熱效應 16
2.4 文獻總結 16
第三章 研究方法 17
3.1 燃燒設備 17
3.1.1 燃料特性 17
3.1.2 環狀燃燒器 18
3.1.3 供氣系統 20
3.2 火焰特性 21
3.2.1 因次分析 21
3.2.2 數位影像 22
3.2.3 溫度量測 23
3.3 粒子影像測速法 25
3.3.1 示蹤粒子 25
3.3.2 雷射系統 26
3.3.3 高速攝影機 27
3.3.4 實驗架設 29
3.3.5 影像後處理 30
第四章 環狀燃燒器之結果與討論 31
4.1 基本特性比較 31
4.1.1 預混丙烷火焰型態與當量比關係 31
4.1.2 預混丙烷火焰操作區間 34
4.1.3 預混丙烷火焰溫度量測 37
4.2 粒子影像測速法及流場可視化 41
4.2.1 速度場 41
4.2.2 渦度場 45
4.2.3 流場可視化 48
4.3 層流火焰週期性變化 50
4.3.1 週期型態觀察 50
4.3.2 週期速度變化 51
4.3.3 週期渦度變化 53
第五章 新型環狀衝擊燃燒器之結果與討論 55
5.1 新型環狀衝擊燃燒器之幾何結構設計 55
5.2 基本特性研究 57
5.2.1 新型環狀衝擊燃燒器火焰型態 57
5.2.2 新型環狀衝擊燃燒器操作區間 58
5.2.3 新型環狀衝擊燃燒器溫度量測 60
5.3 粒子影像測速法結果 63
5.3.1 速度場 63
5.3.2 渦度場 65
第六章 結論 67
6.1 V型環狀衝擊與環狀平面燃燒器實驗結果 67
6.2 新型環狀衝擊燃燒器設計與實驗結果 68
參考文獻 69
附錄 論文進度甘梯圖 73
Andrews, G. E., & Bradley, D. (1972). Determination of Burning Velocities: A Critical Review. Combustion and Flame, 18(1), 133-153. doi:10.1016/S0010-2180(72)80234-7
Ballester, J., & García-Armingol, T. (2010). Diagnostic Techniques for the Monitoring and Control of Practical Flames. Progress in Energy and Combustion Science, 36(4), 375-411. doi:10.1016/j.pecs.2009.11.005
Bennett, B. A. V., McEnally, C. S., Pfefferle, L. D., & Smooke, M. D. (2000). Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane/Air Flames. Combustion and Flame, 123(4), 522-546. doi:10.1016/S0010-2180(00)00158-9
Bonaldo, A., & Kelman, J. B. (2009). Experimental Annular Stratified Flames Characterisation Stabilised by Weak Swirl. Combustion and Flame, 156(4), 750-762. doi:10.1016/j.combustflame.2008.08.011
Boushaki, T., & Sautet, J. C. (2010). Characteristics of Flow from an Oxy-Fuel Burner with Separated Jets: Influence of Jet Injection Angle. Experiments in Fluids, 48(6), 1095-1108. doi:10.1007/s00348-009-0788-1
Bouvet, N., Chauveau, C., Gökalp, I., Lee, S. Y., & Santoro, R. J. (2011). Characterization of Syngas Laminar Flames Using the Bunsen Burner Configuration. International Journal of Hydrogen Energy, 36(1), 992-1005. doi:10.1016/j.ijhydene.2010.08.147
Chander, S., & Ray, A. (2007). Heat Transfer Characteristics of Three Interacting Methane/Air Flame Jets Impinging on a Flat Surface. International Journal of Heat and Mass Transfer, 50(3–4), 640-653. doi:10.1016/j.ijheatmasstransfer.2006.07.011
Cho, J. H., & Lieuwen, T. (2005). Laminar Premixed Flame Response to Equivalence Ratio Oscillations. Combustion and Flame, 140(1–2), 116-129. doi:10.1016/j.combustflame.2004.10.008
Disimile, P. J., Savory, E., & Toy, N. (1995). Mixing Characteristics of Twin Impinging Circular Jets. Journal of Propulsion and Power, 11(6), 1118-1124. doi:10.2514/3.23949
Foat, T., Yap, K. P., & Zhang, Y. (2001). The Visualization and Mapping of Turbulent Premixed Impinging Flames. Combustion and Flame, 125(1–2), 839-851. doi:10.1016/S0010-2180(00)00238-8
García-Armingol, T., Ballester, J., & Smolarz, A. (2013). Chemiluminescence-Based Sensing of Flame Stoichiometry: Influence of the Measurement Method. Measurement, 46(9), 3084-3097. doi:10.1016/j.measurement.2013.06.008
Ghoniem, A. F., Annaswamy, A., Park, S., & Sobhani, Z. C. (2005). Stability and Emissions Control Using Air Injection and H2 Addition in Premixed Combustion. Proceedings of the Combustion Institute, 30(2), 1765-1773. doi:10.1016/j.proci.2004.08.175
Goldstein, R. (1996). Fluid Mechanics Measurements. Philadelphia: Taylor & Francis.
Grant, I. (1997). Particle Image Velocimetry: A Review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(1), 55-76. doi:10.1243/0954406971521665
Hardalupas, Y., & Orain, M. (2004). Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame. Combustion and Flame, 139(3), 188-207. doi:10.1016/j.combustflame.2004.08.003
Hou, S. S., Chang, C. K., & Lin, T. H. (1991). An Experimental Investigation on Multiflame Burning Structure in Conserved Systems. Combustion Science and Technology, 79(1-3), 35-48. doi:10.1080/00102209108951756
Katsuki, M., & Hasegawa, T. (1998). The Science and Technology of Combustion in Highly Preheated Air. Symposium (International) on Combustion, 27(2), 3135-3146. doi:10.1016/S0082-0784(98)80176-8
Kojima, J., Ikeda, Y., & Nakajima, T. (2005). Basic Aspects of Oh(a), Ch(a), and C2(D) Chemiluminescence in the Reaction Zone of Laminar Methane–Air Premixed Flames. Combustion and Flame, 140(1–2), 34-45. doi:10.1016/j.combustflame.2004.10.002
Kuo, K. K., & Parr, T. P. (1994). Non-Intrusive Combustion Diagnostics. Danbury: Begell House.
Kwok, L. C. (2003). Heat Transfer Characteristics of Slot and Round Premixed Impinging Flame Jets. Experimental Heat Transfer, 16(2), 111-137. doi:10.1080/08916150390126496
Li, C. C., Chen, J. W., & Yang, J. T. (2012). Stabilization of Double Flames Interacting with the Intersecting Flow on a V-Shaped Burner. Combustion Science and Technology, 184(12), 2117-2135. doi:10.1080/00102202.2012.703728
Nogenmyr, K. J., Kiefer, J., Li, Z. S., Bai, X. S., & Aldén, M. (2010). Numerical Computations and Optical Diagnostics of Unsteady Partially Premixed Methane/Air Flames. Combustion and Flame, 157(5), 915-924. doi:10.1016/j.combustflame.2009.11.012
Plessing, T., Peters, N., & Wünning, J. G. (1998). Laseroptical Investigation of Highly Preheated Combustion with Strong Exhaust Gas Recirculation. Symposium (International) on Combustion, 27(2), 3197-3204. doi:10.1016/S0082-0784(98)80183-5
Raffel, M., Willert, C. E., & Kompenhans, J. (1998). Particle Image Velocimetry: A Practical Guide. Berlin: Springer.
Tang, C., Huang, Z., Jin, C., He, J., Wang, J., Wang, X., & Miao, H. (2008). Laminar Burning Velocities and Combustion Characteristics of Propane–Hydrogen–Air Premixed Flames. International Journal of Hydrogen Energy, 33(18), 4906-4914. doi:10.1016/j.ijhydene.2008.06.063
Turns, S. R. (2000). An Introduction to Combustion. Singapore: McGraw-hill New York.
Yang, J. T., Chang, C. C., & Pan, K. L. (2002). Flow Structures and Mixing Mechanisms Behind a Disc Stabilizer with a Central Fuel Jet. Combustion Science and Technology, 174(3), 93-124. doi:10.1080/713712993
林泓瑋,2010,環狀貧油火焰特性與注入空氣共伴流之影響,國立台灣大學機械工程學系碩士論文。
陳靖瑋,2014,層狀化燃燒流場之時空動態特性及穩焰機制研究,國立台灣大學機械工程學系博士論文。
蔣淑卿,2002,複合進氣道燃燒器之火焰結構研究,國立清華大學動力機械工程學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top