Andrews, G. E., & Bradley, D. (1972). Determination of Burning Velocities: A Critical Review. Combustion and Flame, 18(1), 133-153. doi:10.1016/S0010-2180(72)80234-7
Ballester, J., & García-Armingol, T. (2010). Diagnostic Techniques for the Monitoring and Control of Practical Flames. Progress in Energy and Combustion Science, 36(4), 375-411. doi:10.1016/j.pecs.2009.11.005
Bennett, B. A. V., McEnally, C. S., Pfefferle, L. D., & Smooke, M. D. (2000). Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane/Air Flames. Combustion and Flame, 123(4), 522-546. doi:10.1016/S0010-2180(00)00158-9
Bonaldo, A., & Kelman, J. B. (2009). Experimental Annular Stratified Flames Characterisation Stabilised by Weak Swirl. Combustion and Flame, 156(4), 750-762. doi:10.1016/j.combustflame.2008.08.011
Boushaki, T., & Sautet, J. C. (2010). Characteristics of Flow from an Oxy-Fuel Burner with Separated Jets: Influence of Jet Injection Angle. Experiments in Fluids, 48(6), 1095-1108. doi:10.1007/s00348-009-0788-1
Bouvet, N., Chauveau, C., Gökalp, I., Lee, S. Y., & Santoro, R. J. (2011). Characterization of Syngas Laminar Flames Using the Bunsen Burner Configuration. International Journal of Hydrogen Energy, 36(1), 992-1005. doi:10.1016/j.ijhydene.2010.08.147
Chander, S., & Ray, A. (2007). Heat Transfer Characteristics of Three Interacting Methane/Air Flame Jets Impinging on a Flat Surface. International Journal of Heat and Mass Transfer, 50(3–4), 640-653. doi:10.1016/j.ijheatmasstransfer.2006.07.011
Cho, J. H., & Lieuwen, T. (2005). Laminar Premixed Flame Response to Equivalence Ratio Oscillations. Combustion and Flame, 140(1–2), 116-129. doi:10.1016/j.combustflame.2004.10.008
Disimile, P. J., Savory, E., & Toy, N. (1995). Mixing Characteristics of Twin Impinging Circular Jets. Journal of Propulsion and Power, 11(6), 1118-1124. doi:10.2514/3.23949
Foat, T., Yap, K. P., & Zhang, Y. (2001). The Visualization and Mapping of Turbulent Premixed Impinging Flames. Combustion and Flame, 125(1–2), 839-851. doi:10.1016/S0010-2180(00)00238-8
García-Armingol, T., Ballester, J., & Smolarz, A. (2013). Chemiluminescence-Based Sensing of Flame Stoichiometry: Influence of the Measurement Method. Measurement, 46(9), 3084-3097. doi:10.1016/j.measurement.2013.06.008
Ghoniem, A. F., Annaswamy, A., Park, S., & Sobhani, Z. C. (2005). Stability and Emissions Control Using Air Injection and H2 Addition in Premixed Combustion. Proceedings of the Combustion Institute, 30(2), 1765-1773. doi:10.1016/j.proci.2004.08.175
Goldstein, R. (1996). Fluid Mechanics Measurements. Philadelphia: Taylor & Francis.
Grant, I. (1997). Particle Image Velocimetry: A Review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(1), 55-76. doi:10.1243/0954406971521665
Hardalupas, Y., & Orain, M. (2004). Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame. Combustion and Flame, 139(3), 188-207. doi:10.1016/j.combustflame.2004.08.003
Hou, S. S., Chang, C. K., & Lin, T. H. (1991). An Experimental Investigation on Multiflame Burning Structure in Conserved Systems. Combustion Science and Technology, 79(1-3), 35-48. doi:10.1080/00102209108951756
Katsuki, M., & Hasegawa, T. (1998). The Science and Technology of Combustion in Highly Preheated Air. Symposium (International) on Combustion, 27(2), 3135-3146. doi:10.1016/S0082-0784(98)80176-8
Kojima, J., Ikeda, Y., & Nakajima, T. (2005). Basic Aspects of Oh(a), Ch(a), and C2(D) Chemiluminescence in the Reaction Zone of Laminar Methane–Air Premixed Flames. Combustion and Flame, 140(1–2), 34-45. doi:10.1016/j.combustflame.2004.10.002
Kuo, K. K., & Parr, T. P. (1994). Non-Intrusive Combustion Diagnostics. Danbury: Begell House.
Kwok, L. C. (2003). Heat Transfer Characteristics of Slot and Round Premixed Impinging Flame Jets. Experimental Heat Transfer, 16(2), 111-137. doi:10.1080/08916150390126496
Li, C. C., Chen, J. W., & Yang, J. T. (2012). Stabilization of Double Flames Interacting with the Intersecting Flow on a V-Shaped Burner. Combustion Science and Technology, 184(12), 2117-2135. doi:10.1080/00102202.2012.703728
Nogenmyr, K. J., Kiefer, J., Li, Z. S., Bai, X. S., & Aldén, M. (2010). Numerical Computations and Optical Diagnostics of Unsteady Partially Premixed Methane/Air Flames. Combustion and Flame, 157(5), 915-924. doi:10.1016/j.combustflame.2009.11.012
Plessing, T., Peters, N., & Wünning, J. G. (1998). Laseroptical Investigation of Highly Preheated Combustion with Strong Exhaust Gas Recirculation. Symposium (International) on Combustion, 27(2), 3197-3204. doi:10.1016/S0082-0784(98)80183-5
Raffel, M., Willert, C. E., & Kompenhans, J. (1998). Particle Image Velocimetry: A Practical Guide. Berlin: Springer.
Tang, C., Huang, Z., Jin, C., He, J., Wang, J., Wang, X., & Miao, H. (2008). Laminar Burning Velocities and Combustion Characteristics of Propane–Hydrogen–Air Premixed Flames. International Journal of Hydrogen Energy, 33(18), 4906-4914. doi:10.1016/j.ijhydene.2008.06.063
Turns, S. R. (2000). An Introduction to Combustion. Singapore: McGraw-hill New York.
Yang, J. T., Chang, C. C., & Pan, K. L. (2002). Flow Structures and Mixing Mechanisms Behind a Disc Stabilizer with a Central Fuel Jet. Combustion Science and Technology, 174(3), 93-124. doi:10.1080/713712993
林泓瑋,2010,環狀貧油火焰特性與注入空氣共伴流之影響,國立台灣大學機械工程學系碩士論文。陳靖瑋,2014,層狀化燃燒流場之時空動態特性及穩焰機制研究,國立台灣大學機械工程學系博士論文。蔣淑卿,2002,複合進氣道燃燒器之火焰結構研究,國立清華大學動力機械工程學系碩士論文。