跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/13 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李淑娟
研究生(外文):Shu- jyuan Li
論文名稱:螢光奈米探針之製備及其在植物檢疫病原偵測應用之研究
論文名稱(外文):Study on the preparation of fluorescent nanoprobe and its application on the detection of plant quarantine pathogens.
指導教授:姚國山姚國山引用關係
指導教授(外文):Kuo-shan Yao
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:植物病原偵測螢光二氧化矽奈米探針微乳液法螢光連結抗體免疫分析法
外文關鍵詞:Fluorescence-linked immunosorbent assaydetection of plant pathogensFluorescent silica nanoprobeMicroemulsion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用微乳液法(microemulsion method)合成SiO2奈米粒子粒徑平均約為21nm~49nm。經掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及原子力顯微鏡(AFM)觀察粒子表面,結果顯示SiO2奈米粒子之粒子型態均勻、表面光滑。以光譜儀掃描確認SiO2奈米粒子能將Tris(2,2’-bipyridyl)dichlororuthenium(II) hexahydrate(Rubpy)水溶性螢光染料順利包覆於奈米粒子中。進一步比較3-Aminopropyltriethoxysilane(APTES)及Trimethoxysilylpro-
pyldiethylenetriamine (DETA)法修飾奈米粒子表面官能基(NH2)之效能,結果顯示以APTES法之修飾效能較佳,且高DETA法約為3.3倍。將不同粒徑之SiO2-NH2-COOH與山羊抗兔子免疫球蛋白(IgG)抗體聯結製成螢光二氧化矽奈米探針(fluorescent silica nanoprobes, FSP),並以檢測茄科植物細菌性斑點病原菌(Xanthomonas axonopodis pv.vesicatoria XVT40)為例,利用螢光酵素連結抗體免疫分析儀(FLISA)法進行植物病原菌之偵測,結果顯示當病原菌濃度為103cfu/ml時,FSP亦可檢測出XVT40病原菌抗原之存在;且結果顯示粒徑大小為影響探針之靈敏度之因子之一,粒徑越小其靈敏度亦越高。本研究結果顯示螢光二氧化矽奈米探針具有做為植物病原檢疫診
斷及偵測的潛力。
The study utilized technique of microemulsion to synthesize Silica nanoparticles. The sizes of silica nanoparticles were measured by using Scanning electron microscopy (SEM). Data showed that diameters of nanoparticles were approximate 21~49 nm. We also observed the surface and shape of nanoparticles were relatively smooth and circular via Transmission electron microscope (TEM) and Atomic force microscope (AFM). The silica nanoparticles could be efficiently covered with the fluorescent dye, Tris(2,2’- bipyridyl) dichlororuthenium (II) hexahydrate (Rubpy). Furthermore, compared the methods of APTES with DETA of surface modified, the results showed that APTES were better. It increased more than threefold than which in DETA. The different sizes of fluorescent SiO2-NH2-COOH nanoparticles were further conjugated with Goat anti-rabbit IgG antibodies termed Fluorescent silica nanoprobe (FSP). FSP was tested for the detection of antigens of phytopathogenic bacterium, Xanthomonas axonopodis pv. vesicatoria (XVT40) using fluorescence-linked immunosorbent assay (FLISA). The results showed that varying size nanoparticles of FSP could efficiently detect XVT40 antigens in a concentration 103 cfu/ml. These results demonstrated that the fluorescent silica nanoprobes can be effectively used to detect the
quarantine pathogens on plant diseases.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
第二章 文獻回顧 4
2.1 奈米材料 4
2.2 奈米材料的製備 5
2.2.1物理方法 5
2.2.2化學方法 5
2.3 微乳液法簡介 6
2.4 奈米材料的應用 8
2.5 二氧化矽簡介 9
2.6 奈米粒子連結生物分子的方式 11
2.6.1 雙功能鍵結 11
2.6.2 靜電吸引力 11
2.6.3 矽烷偶聯劑 12
2.7 茄科細菌性斑點病原菌 12
2.8 ELISA簡介及應用 15
第三章 材料與方法 17
3.1 實驗材料 17
3.2實驗設備 19
3.3 實驗流程規劃 20
3.4. 螢光二氧化矽奈米粒子合成製備 21
3.4.1 不同粒徑螢光二氧化矽奈米粒子 21
3.4.2 含胺基螢光二氧化矽奈米粒子 23
3.5 光譜測定 25
3.6 SEM表面觀察、EDS成分分析及TEM粒徑量測 25
3.7 AFM表面粗糙度量測 25
3.8 螢光猝滅檢測 26
3.9 植物病原細菌全細胞多源抗體製備 26
3.10 化學法表面修飾 28
3.10.1 胺基(SiO2-DETA) 28
3.10.2 醛基(SiO2-DETA-CHO) 29
3.10.3 醛基(SiO2-NH2-CHO) 30
3.10.4 胺基檢測 31
3.10.5 醛基檢測 32
3.10.6 羧基(SiO2-NH2-COOH) 33
3.10.7 羧基檢測 34
3.11 奈米粒子與抗體連結 34
3.11.1 表面修飾醛基之奈米粒子 34
3.11.2 表面修飾羧基之奈米粒子 36
3.12 奈米粒子連結抗體效果檢測 37
3.13 XVT40病原菌檢測 39
第四章 結果與討論 41
4.1 螢光二氧化矽奈米粒子合成製備 41
4.2 光譜測定 43
4.3 SEM表面觀察、EDS成分分析及TEM粒徑量測 44
4.4 原子力顯微鏡(AFM)表面粗糙度量測 53
4.5 螢光猝滅檢測 54
4.6 植物病原細菌全細胞多源抗體 56
4.7 官能基檢測 57
4.7.1 胺基檢測 57
4.7.2 醛基檢測 60
4.7.3 羧基檢測 62
4.8 化學法表面修飾 63
4.8.1 胺基 63
4.8.2 醛基 64
4.8.3 羧基 64
4.9奈米粒子連結免疫球蛋白IgG效果檢測 65
4.10 螢光免疫分析檢測XVT40病原菌 67
第五章 結論 70
參考文獻 73
呂英治、洪敏雄. 2001. 奈米材料及製程介紹. 科儀新知23:49-53.
杜志强、孫福在. 1994. 辣椒、番茄细菌性斑點病國内外研究進展.
植物檢疫6:358-360.
吳思翰、牟中原. 2006. 中孔洞二氧化矽奈米粒子於生物醫學上之
應用. 化學101:1-7.
吳雅芳、陳紹崇、彭瑞菊、黃淑惠、鄭安秀. 2008. 茄科細菌性斑點病病原系菌抗銅性之探討. 台南農業專訊64:20-24
何曉曉、王柯敏、譚蔚泓、陳基耘、段菁華、原茵、林霞. 2005.
靜電相互作用對微乳液法製備核殼奈米顆粒的影響.
科學通報20:2185-2190.
高逢時. 2005. 奈米科技. 科學發展386:67-71.
莊萬發. 1995. 超微粒子材料技術. 復漢出版社.
陳東煌. 2006. 功能性粉末複合奈米粒子. 科學發展408:41-45.
許秀慧、安寶貞. 2003. 台灣農家要覽. 行政院農業委員會出版180-186.
曹恒光、連大成. 2001淺談微乳液. 物理雙月刊23:488-493.
楊文才、陳佳、張曉敏、Francis David M. 2007. 番茄瘡痂病病原菌分類、抗性遺傳和分子標記輔助選擇進展. 中國農業科學40:283-290.
楊正義、陳吉峰、葉怡均、陳正龍、陳家俊. 2001. 金屬、半導體
奈米晶體在生物檢測級分析上的應用. 物理雙月刊:667-677.
楊智惠、黃耿祥、王英基、林裕城. 2008. 量子點-奈米彩虹標籤.
科學發展422:46-49.
蔡中燕. 1998. 奈米材料簡介及製備. 化工資訊1:28-42.
趙廷昌、王振東. 1996. 我國番茄细菌性病害研究概述.
遼寧農業科學2:30-34.
趙思峰、廖依學、王昌、李明、彭珊、劉欽傳、魏玉華. 2004. 新疆加工番茄病蟲草害發生概况及综合防治. 新疆農業科學41:274-276.
劉海波. 2006. 奈米粒子的製備及其在蛋白質微陣列檢測中的應用
研究. 廈門大學碩士論文.
賴明雄. 1994. 超微粒子的製造方法簡介. 粉末冶金會刊19:247-253.
魏碧玉、賴明雄. 1999. 奈米材料在光學上的應用及其製造方法.
工業材料153:113-123.
Akerman, M.E., Chan. W.C. Plaakkonen and S.N. Bhatia. 2002. Ruoslahit E.nanocrystal targeting in vivo . Proc. Natl. Acad. Sci. 20:12617-12623.
Bruchez , M., M. Moronne, P. Gin, S. Weiss and A.P. Alivisatos. 1998.
Semiconductor nanocrystals as fluorescent biological labels.
Sci. 281:2013-2016.
Chenjie, X., X. Bengang and R. Jianghong . 2006. A self-assembled quantum dot probe for detecting β-lactamase activity. Biochem. Biophys. Res. Commun. 344:931–935.
Doidge, E.M. 1921. A tomato canker. Annu. Appl. Biol. 7:407-430.
Edelstein, R.L., C.R. Tamanaha, P.E. Sheehan, M.M. Miller, D.R. Baselt, L.J. Whitman and R.J. Colton. 2000. The BARC biosensor applied to the detection of biological warfare anents. Biosensors Bioelectron14:805-813.
Gardner, M.W. and J.B. Kendrick. 1921 .Bacterial spot of tomato. J. Agric. Rese. 21: 123-156.
Goldman, E.R., G.P. Anderson, P.T. Tran, H. Mattoussi, P.T. Charles and J.M. Mauro. 2007. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for flurooimmunoassays. Anal. Chem. 74:841-847.
Huang, D.M., Y.K Hung, B.S. Hsu, S.C. Chen, W.H. Chien, C.L. Tsai, C.P. Kuo, C.T. Kang, J.C. Yang, C.S. Mou and C.Y. Chen. 2005. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells:implication for stem cell tracking. FASEB.J. 19: 2014-2016.
Hubert, M., C. Saby, C. Martelet, N.J. Renault, P.S. Alexey, M.H. Charles, T. Delair and B. Mandrand. 1996. Impedance analysis of Si/SiO2 heterostructures grafted with antibodies:an approach for immunosensor development. J. Electroanal. Chem. 406:53-58.
Jones, J.B., J.P. Jones, R.E. Stall and T.A. Zitter. 1991 .Compendium of Tomato Diseases. Minnesota: APS Press. USA.
Kresge, C.T., M.E. Leonwicz, W.J. Roth, J.C. Vartuli and J.S. Beeck. 1992. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism. Lett. Nature. 359:710-713.
Kurien, B.T. and Scofild, R.H. 2006. Western Blotting. Methods 38:283–293
Lian, W., S.A. Litherland, H. Badrane, W. Tan, D. Wu, H.V. Baker,
P.A.Gulig, D.V. Lim and S. Jin. 2004. Ultrasensitive detection of
biomolecules with fluorescent dye-doped nanoparticles. Anal. Biochem. 334:135-144.
Lukyanenko, A. N. 1991. Disease resistance in tomato Genetic Improvement of Tomato. Plant Dis. 73: 99-119.
Ma, J., H. Wong, L.B. Kong and K.W. Peng. 2003. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 14:619-623.
Mah , C., I. Zolotukhin, T.J. Fraites, J. Dobson, C. Batich and B.J.
Byrne.2000. Microsphere-mediated delivery of recombinant AAV vectors in vitro and vivo. Mol. Therapy 1:239.
Mahtab, R., P. Rogers and C.J. Murphy. 1995. Protein-sized quantum dot luminesce can distinguish between〝straight〞,〝bent〞,and〝kinked〞oligonucleotides. J. Am. Chem. Soc. 117:9099-9100.
Mamedova, N.N., A.K. Nicholas, A.L. Rogach, and J. Studer. 2001.
Albumin-Cdte nanoparticle bioconjugates, prepartion, structure, and interunit energy transfer with antenna effect. Nano lett. 6:281-286.
Matt, K. and K. Raoul. 2003. Development of a hydroxyl radical ratiometric nanoprobe. Sens. Actuators. B. Chem 90:76–81.
Mitchell, G.P. C.A Mirkin and R.L. Letsinger. 1999. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121:8122-8123.
Mitchell, P. 2001. Turning the spotlight on cellular imaging. Nat. Biotechnol. 19:1013-1017.
Nguyen, T.D., H.R. Tseng, P.C. Celestre, A.H. Flood, Y. Liu, J.F. Stoddart and J.I. Zink. 2005. Nanomedicine: Application of Nanobiotechnology in Medical Practice . Proc. Natl. Acad. Sci. USA. 102:10029-10041.
Panatarotto, D., C.D. Prtidos, J. Hoebke, F. Brown, E. Kramer, J.P. Briand, Muller, S. ,M. Prato and A. Bianco. 2003. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10:961-966.
Pernezny, K., L.E. Datnoff, T. Mueller, J. Collins. 1996. Losses in freshmarket tomato production in Florida due to target spot and bacterial spot and the benefits of protectant fungicides.
Plant Dis. 80: 559-563.
Salata , O.V. 2004. Applications of nanoparticles in biology and medicine. Bio. Med. Centra. l 2:1-6.
Santra, S., K. Wang, R. Tapec and W. Tan. 2001. Development of novel
dyedoped silica nanoparticles for biomarker application. J.
Biomed 6:160-166.
Santra, S., P. Zhang, K. Wang, R. Tapec and W. Tan. 2001. Conjugation of biomolecules with luminophore-deped silica nanoparticles for photostable biomarkers. Anal. Chem. 73:498-499.
Scott, J.W. 1997 .Tomato improvement for bacterial disease resistance for the tropics: a contemporaty basis and future prospects. Proceedings of the First International Conference on the Processing Tomato and the First International Symposium on Tropical Tomato Diseases. Alexandria: ASHS Press Virginia, USA. 117-123.
Stober, W., A. Fink and E.J. Bohn. 1968. Controlled growth of monodisperse silica spheres in the micron size range. Colloid. Interface. Sci. 26:62-69.
Wang, S., N. Mamedova, N.A. Kotov, W. Chen and J. Studer. 2002.
Antigen/antibody immunocomplex from CdTe nanoparticle
bioconjugates. Nano Lett. 2:817-822.
Wang, L., K. Wang, S. Santra, X. Zhao, L.R. Hilliard, J.E. Smith, Y. Wu and W. Tan. 2006. Glow in the biological world. Anal. Chem. 1:647-654.
Wu, S.H., Y.S. Lin, Y. Hung, Y.H. Chou, Y.H. Hsu, C. Chang and C.Y. Mou. 2008. Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies . Chem. 9:53-57.
Xiaohu, G., C. Yuanyuan, M.L. Richard, W.K. C. Leland and N. Shuming. 2004. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22:969-976.
Zhiqiang,Y., T. Mingqian, G. Wang and J. Yuan. 2005. Preparation, characterization and application of fluorescent terbium complex-doped zirconia nanoparticles. J. Fluoresc.15:499-504.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top