跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/30 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉振岳
研究生(外文):LIU, CHEN-YUEH
論文名稱:智慧型可規劃式升降壓轉換器之設計
論文名稱(外文):Design of Smart Programmable Buck-Boost Converter
指導教授:許明華許明華引用關係
指導教授(外文):SHEU, MING-HWA
口試委員:劉紹宗吳建明林進發
口試委員(外文):LIU, SHAO-TSUNGWU, CHIEN-MINGLIN, JIN-FA
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:ARM物聯網數位PWM混合訊號
外文關鍵詞:ARMIoTDPWMMixed Signal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:0
隨著時代變遷,科技得進步速度日新月異,而物聯網裝置的使用率也逐年的增加。目前裝置於戶外的無線感測結點通常同時具有能源的收集裝置與儲存裝置,並以此減少對輸電線的依賴來增加裝置環境的彈性。為了提供這類裝置的電源同時管理電池的充放電,系統中通常會使用多輸入-多輸出(multi-in multi-out, MIMO)電源管理IC。因此本論文提出了使用0.18-μm CMOS的電源管理IC,結合進階精簡指令集機器(Advanced RISC Machine, ARM)實現系統,以混合訊號設計將ARM處理器電路進行cell-based電路合成,並把所需的類比電路使用full-custom完成並與數位電路整合至同一晶片內。而提出的CDL-PWM達到功率與面積的節省,與前設計比較時在D=50%可節省31.1%之功率而D=0%時可節省65.3%之功率。而整合微處理器進電路則同時達到了A)可程式控制輸出以節省重新設計電路之成本,B)同時處理感測資訊而不需額外的運算單元,以及C)掃描工作頻率以達到最高轉換效率。系統模擬可在輸入於0.9~3.3V區間中達到穩定1.8V電池電壓與0.7~1.2V可程式控制電壓雙輸出,最高效率為85%。本電路系統將透過台灣半導體研究中心於台積電使用TSMC 180 nm Mixed Signal RF General Purpose Process (T18)下線,完成智慧型可規劃式升降壓轉換器設計。
With the change of times, the speed of technological progress is changing rapidly, and the utilization rate of Internet of Things devices is increasing year by year. At present, the wireless sensing nodes installed outdoors usually have both energy collection and storage devices, thereby reducing reliance on the transmission lines to increase the elasticity of the device environment. In order to provide the power supply for such devices and to manage the charge and discharge of the battery at the same time, the multi-input-multi-output (MIMO) power management IC is often used in the system. Therefore, this thesis proposes the use of 0.18-μm CMOS power management IC, combined with advanced RISC Machine (ARM) implementation, in a mixed signal design with the cell-based ARM processor circuit synthesis, and the required analog circuit is completed using full-custom and integrated into the digital circuit on the same chip. The proposed CDL-PWM can save power and area, compared with the previous design, it can save 31.1% of power at D=50% and 65.3% power when D=0%. The imbedded microprocessor circuit also achieves A) program-controlled output to save the cost of redesigning the circuit, B) simultaneously processing sensing information without the need for additional computing units, and C) scanning the operating frequency to achieve maximum conversion efficiency. The smart programmable buck-boost converter is implemented based on TSMC 180 nm Mixed Signal RF General Purpose Process (T18). System simulation can achieve both a stable 1.8V battery voltage and 0.7 to 1.2V programmable voltage at the same time at input range of 0.9 to 3.3V, with a maximum efficiency of 85%.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 - 1 -
1.1 背景簡介 - 1 -
1.2 研究動機 - 2 -
1.3 論文架構 - 3 -
第二章 IoT感測器節點 - 4 -
2.1 智慧IoT感測器節點 - 4 -
2.2 IoT感測元件驗證及展示平台服務計畫 - 6 -
2.2.1 簡介 - 6 -
2.2.2 操作流程 - 7 -
第三章 切換式升降壓轉換器之簡介與架構 - 11 -
3.1 文獻探討 - 12 -
3.2 切換式轉換器之功率轉換效率 - 16 -
3.3 最大功率點(MPP)之計算 - 17 -
第四章 智慧型可規劃式升降壓轉換器 - 19 -
4.1 系統架構 - 20 -
4.2 ARM CPU - 22 -
4.2.1 混和訊號設計 - 22 -
4.2.2 混和訊號晶片中的ARM處理器 - 23 -
4.2.3 Cortex-M0 System Design Kit (CM0DK) - 23 -
4.2.4 以TSMC 180nm CMOS進行CM0處理器邏輯合成 - 25 -
第五章 數位PWM控制器之設計 - 29 -
5.1 類比/數位轉換器(ADC) - 29 -
5.2 PWM產生電路 - 33 -
5.3 其他電路 - 39 -
5.4 晶片布局 - 46 -
5.5 模擬結果 - 48 -
第六章 結論與未來展望 - 51 -
參考文獻 - 52 -
附錄 - 54 -

[1]X. Zhang, P.-H. Chen, Y. Okuma, K. Ishida, Y. Ryu, K. Watanabe, T. Sakurai, and M. Takamiya, “A 0.6V Input CCM/DCM Operating Digital Buck Converter in 40nm CMOS,” IEEE J. Solid-State Circuits, vol. 49, no. 11, Nov. 2014, pp. 2377-2386.
[2]K. W. R. Chew, Z. Sun, H. Tang, and L. Siek, “A 400 nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 68–69.
[3]M. R. Elhebeary, M. A. A. Ibrahim, M. M. Aboudina, and A. N. Mohieldin, “Dual-source self-start high-efficiency microscale smart energy harvesting system for IoT,” IEEE Trans. Ind. Electron., vol. 65, no. 1, Jan. 2018, pp. 342–351.
[4]Rajiv Damodaran Prabha, Gabriel A. Rinc´on-Mora, "0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System" IEEE TRANS. ON POWER ELECTRONICS, VOL. 31, NO. 4, Apr 2016, pp. 2950 - 2958.
[5]Jiangyi Li, Jae-sun Seo, Ioannis Kymissis, and Mingoo Seok, "Triple-Mode, Hybrid-Storage, Energy Harvesting Power Management Unit: Achieving High Efficiency Against Harvesting and Load Power Variabilities,"IEEE J. Solid-State Circuits, vol. 52, no. 10, Oct. 2017, pp. 2550-2562.
[6]Michele Dini, Aldo Romani, Matteo Filippi, and Marco Tartagni, "A Nanopower Synchronous Charge Extractor IC for Low-Voltage Piezoelectric Energy Harvesting With Residual Charge Inversion," IEEE trans. power electronics, vol. 31, no. 2, Feb. 2016, pp. 1263-1274.
[7]Brian Zimmer, Member, Yunsup Lee, Alberto Puggelli, Student Member, "A RISC-V Vector Processor With Simultaneous-Switching Switched-Capacitor DC–DC Converters in 28 nm FDSOI," IEEE J. Solid-State Circuits, vol. 51, no. 4, Apr. 2016, pp. 930-942.
[8]Seong Joong Kim, Qadeer Khan, Mrunmay Talegaonkar, Amr Elshazly, Arun Rao, Nathanael Griesert, Greg Winter, William McIntyre, and Pavan Kumar Hanumolu, "High Frequency Buck Converter Design Using Time-Based Control Techniques," IEEE J. Solid-State Circuits, vol. 50, no. 4, Apr. 2015, pp. 990-1001.
[9]Olivier Trescases, Aleksandar Prodic´, and Wai Tung Ng, "Digitally Controlled Current-Mode DC–DC Converter IC," IEEE trans. CAS—I, vol. 58, no. 1, Jan. 2011, pp. 219-231.
[10]Sung-Yun Park, Jihyun Cho, Kyuseok Lee, and Euisik Yoon, "A PWM Buck Converter With Load-Adaptive Power Transistor Scaling Scheme Using Analog-Digital Hybrid Control for High Energy Efficiency in Implantable Biomedical Systems," IEEE TRANS. biomedical circuits and systems, vol. 9, no. 6, Dec. 2015, pp. 885-895.
[11]Seong Joong Kim, Qadeer Khan, Mrunmay Talegaonkar, Amr Elshazly, Arun Rao, Nathanael Griesert, Greg Winter, William McIntyre, and Pavan Kumar Hanumolu, "High Frequency Buck Converter Design Using Time-Based Control Techniques," IEEE J. Solid-State Circuits, vol. 50, no. 4, Apr. 2015, pp. 930-942.
[12]Chien-Hung Tsai, Chun-Hung Yang Jiunn-Hung Shiau, and Bo-Ting Yeh, "Digitally Controlled Switching Converter With Automatic Multimode Switching," IEEE trans. power electronics, vol. 29, no. 4, Apr. 2014, pp. 1830-1839.
[13]Saurav Bandyopadhyay, Yogesh K. Ramadass, and Anantha P. Chandrakasan, "20 uA to 100 mA DC–DC Converter With 2.8-4.2 V Battery Supply for Portable Applications in 45 nm CMOS," IEEE J. Solid-State Circuits, vol. 46, no. 12, Dec. 2011, pp. 2807-2820.
[14]Cheung Fai Lee and Philip K. T. Mok, "A Monolithic Current-Mode CMOS DC–DC Converter With On-Chip Current-Sensing Technique," IEEE J. Solid-State Circuits, Vol. 39, no. 1, Jan. 2004, pp. 3-14.
[15]Feng-Fei Ma, Wei-Zen Chen, and Jiin-Chuan Wu, "A Monolithic Current-Mode Buck Converter With Advanced Control and Protection Circuits," IEEE trans. power electronics, vol. 22, no. 5, Sep. 2007, pp. 1836-1846.
[16]ARM Ltd, "Cortex™-M System Design Kit Technical Reference Manual," Rev. r1p0, 2013.
[17]NAR Labs, "ARM Cortex-M0 MCU-based Soc Design Kit User Guide," Rev. 1.1, 2017.
[18]Changsik Yoo, "A CMOS Buffer Without Short-Circuit Power Consumption," IEEE trans. CAS—II, vol. 47, no. 9, Sep. 2000, pp. 935-937.
[19]Gyudong Kim, Min-Kyu Kim, Byoung-Soo Chang, and Wonchan Kim, "A Low-Voltage, Low-Power CMOS Delay Element," IEEE J. Solid-State Circuits, vol. 31, no. 1, Jul. 1996, pp. 966-971.
[20]Tsz Yin Man, Philip K. T. Mok, Mansun Chan, "An Auto-Selectable-Frequency Pulse-Width Modulator for Buck Converters with Improved Light-Load Efficiency," ISSCC, Analog Power Techniques, 2008, pp. 440-441.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top