|
1.Vilchez, D., Saez, I. & Dillin, A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5, 5659 (2014). 2.Wang, J. & Maldonado, M.A. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol 3, 255-261 (2006). 3.Berndsen, C.E. & Wolberger, C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21, 301-307 (2014). 4.Deshaies, R.J. & Joazeiro, C.A. RING domain E3 ubiquitin ligases. Annu Rev Biochem 78, 399-434 (2009). 5.Komander, D. & Rape, M. The ubiquitin code. Annu Rev Biochem 81, 203-229 (2012). 6.Kulathu, Y. & Komander, D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13, 508-523 (2012). 7.Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J 19, 94-102 (2000). 8.Spence, J., Sadis, S., Haas, A.L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15, 1265-1273 (1995). 9.Sun, L. & Chen, Z.J. The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16, 119-126 (2004). 10.Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205 (2007). 11.Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. ''Protein Modifications: Beyond the Usual Suspects'' review series. EMBO Rep 9, 536-542 (2008). 12.Jin, J., Li, X., Gygi, S.P. & Harper, J.W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135-1138 (2007). 13.Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle''s dynamics and signaling. PLoS One 3, e1487 (2008). 14.Li, W. & Ye, Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65, 2397-2406 (2008). 15.Duplan, V. & Rivas, S. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front Plant Sci 5, 42 (2014). 16.Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10, 398-409 (2009). 17.Wang, X. & Martin, D.S. The COP9 signalosome and cullin-RING ligases in the heart. Am J Cardiovasc Dis 5, 1-18 (2015). 18.Metzger, M.B., Hristova, V.A. & Weissman, A.M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125, 531-537 (2012). 19.Wenzel, D.M., Lissounov, A., Brzovic, P.S. & Klevit, R.E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105-108 (2011). 20.Callis, J. The ubiquitination machinery of the ubiquitin system. Arabidopsis Book 12, e0174 (2014). 21.Sarikas, A., Hartmann, T. & Pan, Z.Q. The cullin protein family. Genome Biol 12, 220 (2011). 22.Jackson, S. & Xiong, Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 34, 562-570 (2009). 23.Zimmerman, E.S., Schulman, B.A. & Zheng, N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 20, 714-721 (2010). 24.Lee, J. & Zhou, P. Pathogenic Role of the CRL4 Ubiquitin Ligase in Human Disease. Front Oncol 2, 21 (2012). 25.Yin, Y. et al. The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis. Dev Biol 356, 51-62 (2011). 26.Cox, B.J. et al. Phenotypic annotation of the mouse X chromosome. Genome Res 20, 1154-1164 (2010). 27.Yin, Y. et al. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis. J Biol Chem 291, 6923-6935 (2016). 28.Li, T., Chen, X., Garbutt, K.C., Zhou, P. & Zheng, N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124, 105-117 (2006). 29.Angers, S. et al. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590-593 (2006). 30.Scrima, A. et al. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 135, 1213-1223 (2008). 31.He, Y.J., McCall, C.M., Hu, J., Zeng, Y. & Xiong, Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20, 2949-2954 (2006). 32.Jin, J., Arias, E.E., Chen, J., Harper, J.W. & Walter, J.C. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23, 709-721 (2006). 33.Xu, C. & Min, J. Structure and function of WD40 domain proteins. Protein Cell 2, 202-214 (2011). 34.Stirnimann, C.U., Petsalaki, E., Russell, R.B. & Muller, C.W. WD40 proteins propel cellular networks. Trends Biochem Sci 35, 565-574 (2010). 35.Lee, J. & Zhou, P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26, 775-780 (2007). 36.Biedermann, S. & Hellmann, H. WD40 and CUL4-based E3 ligases: lubricating all aspects of life. Trends Plant Sci 16, 38-46 (2011). 37.Letunic, I., Doerks, T. & Bork, P. SMART 6: recent updates and new developments. Nucleic Acids Res 37, D229-232 (2009). 38.Hu, J., McCall, C.M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6, 1003-1009 (2004). 39.Nishitani, H. et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25, 1126-1136 (2006). 40.Matsumoto, S. et al. Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein. Nucleic Acids Res 43, 1700-1713 (2015). 41.Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22, 383-394 (2006). 42.Guerrero-Santoro, J. et al. The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res 68, 5014-5022 (2008). 43.Michaud, J. et al. Isolation and characterization of a human chromosome 21q22.3 gene (WDR4) and its mouse homologue that code for a WD-repeat protein. Genomics 68, 71-79 (2000). 44.Alexandrov, A., Martzen, M.R. & Phizicky, E.M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, 1253-1266 (2002). 45.Alexandrov, A., Grayhack, E.J. & Phizicky, E.M. tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p. RNA 11, 821-830 (2005). 46.Leulliot, N. et al. Structure of the yeast tRNA m7G methylation complex. Structure 16, 52-61 (2008). 47.Shaheen, R. et al. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol 16, 210 (2015). 48.Wu, J., Hou, J.H. & Hsieh, T.S. A new Drosophila gene wh (wuho) with WD40 repeats is essential for spermatogenesis and has maximal expression in hub cells. Dev Biol 296, 219-230 (2006). 49.Cheng, I.C. et al. Wuho Is a New Member in Maintaining Genome Stability through its Interaction with Flap Endonuclease 1. PLoS Biol 14, e1002349 (2016). 50.de The, H., Chomienne, C., Lanotte, M., Degos, L. & Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347, 558-561 (1990). 51.Goddard, A.D., Borrow, J., Freemont, P.S. & Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254, 1371-1374 (1991). 52.Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66, 663-674 (1991). 53.Pandolfi, P.P. et al. Structure and origin of the acute promyelocytic leukemia myl/RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6, 1285-1292 (1991). 54.Bernardi, R. & Pandolfi, P.P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8, 1006-1016 (2007). 55.Jin, G., Wang, Y.J. & Lin, H.K. Emerging Cellular Functions of Cytoplasmic PML. Front Oncol 3, 147 (2013). 56.Bischof, O. et al. Deconstructing PML-induced premature senescence. EMBO J 21, 3358-3369 (2002). 57.Nguyen, L.A. et al. Physical and functional link of the leukemia-associated factors AML1 and PML. Blood 105, 292-300 (2005). 58.Xu, Z.X., Zou, W.X., Lin, P. & Chang, K.S. A role for PML3 in centrosome duplication and genome stability. Mol Cell 17, 721-732 (2005). 59.Lin, H.K., Bergmann, S. & Pandolfi, P.P. Cytoplasmic PML function in TGF-beta signalling. Nature 431, 205-211 (2004). 60.Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247-1251 (2010). 61.Shimada, N., Shinagawa, T. & Ishii, S. Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein. Genes Cells 13, 245-254 (2008). 62.Shen, T.H., Lin, H.K., Scaglioni, P.P., Yung, T.M. & Pandolfi, P.P. The mechanisms of PML-nuclear body formation. Mol Cell 24, 331-339 (2006). 63.Dellaire, G. & Bazett-Jones, D.P. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26, 963-977 (2004). 64.Carracedo, A., Ito, K. & Pandolfi, P.P. The nuclear bodies inside out: PML conquers the cytoplasm. Curr Opin Cell Biol 23, 360-366 (2011). 65.Gurrieri, C. et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96, 269-279 (2004). 66.Wang, Z.G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547-1551 (1998). 67.Bernardi, R. et al. Pml represses tumour progression through inhibition of mTOR. EMBO Mol Med 3, 249-257 (2011). 68.Trotman, L.C. et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523-527 (2006). 69.Scaglioni, P.P. et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269-283 (2006). 70.Carracedo, A. et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest 122, 3088-3100 (2012). 71.Ito, K. et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453, 1072-1078 (2008). 72.Ito, K. et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18, 1350-1358 (2012). 73.Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207-210 (2000). 74.Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14, 2015-2027 (2000). 75.Ivanschitz, L. et al. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci U S A 112, 14278-14283 (2015). 76.Mallette, F.A., Goumard, S., Gaumont-Leclerc, M.F., Moiseeva, O. & Ferbeyre, G. Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 23, 91-99 (2004). 77.Vernier, M. et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 25, 41-50 (2011). 78.Martin, N. et al. Physical and functional interaction between PML and TBX2 in the establishment of cellular senescence. EMBO J 31, 95-109 (2012). 79.Wang, Z.G. et al. PML is essential for multiple apoptotic pathways. Nat Genet 20, 266-272 (1998). 80.Moller, A. et al. PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 63, 4310-4314 (2003). 81.Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648-653 (2002). 82.Kurki, S., Latonen, L. & Laiho, M. Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 116, 3917-3925 (2003). 83.Bernardi, R. et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6, 665-672 (2004). 84.Salomoni, P. et al. The promyelocytic leukemia protein PML regulates c-Jun function in response to DNA damage. Blood 105, 3686-3690 (2005). 85.Croxton, R. et al. Daxx represses expression of a subset of antiapoptotic genes regulated by nuclear factor-kappaB. Cancer Res 66, 9026-9035 (2006). 86.Bernardi, R. et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442, 779-785 (2006). 87.Cheng, X., Liu, Y., Chu, H. & Kao, H.Y. Promyelocytic leukemia protein (PML) regulates endothelial cell network formation and migration in response to tumor necrosis factor alpha (TNFalpha) and interferon alpha (IFNalpha). J Biol Chem 287, 23356-23367 (2012). 88.Reineke, E.L., Liu, Y. & Kao, H.Y. Promyelocytic leukemia protein controls cell migration in response to hydrogen peroxide and insulin-like growth factor-1. J Biol Chem 285, 9485-9492 (2010). 89.Kuo, H.Y. et al. PML represses lung cancer metastasis by suppressing the nuclear EGFR-mediated transcriptional activation of MMP2. Cell Cycle 13, 3132-3142 (2014). 90.Gambacorta, M. et al. Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues. Am J Pathol 149, 2023-2035 (1996). 91.Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 193, 1361-1371 (2001). 92.Lallemand-Breitenbach, V. et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10, 547-555 (2008). 93.Tatham, M.H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10, 538-546 (2008). 94.Sun, H., Leverson, J.D. & Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26, 4102-4112 (2007). 95.Geoffroy, M.C., Jaffray, E.G., Walker, K.J. & Hay, R.T. Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell 21, 4227-4239 (2010). 96.Talis, A.L., Huibregtse, J.M. & Howley, P.M. The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 273, 6439-6445 (1998). 97.Louria-Hayon, I. et al. E6AP promotes the degradation of the PML tumor suppressor. Cell Death Differ 16, 1156-1166 (2009). 98.Wolyniec, K. et al. E6AP ubiquitin ligase regulates PML-induced senescence in Myc-driven lymphomagenesis. Blood 120, 822-832 (2012). 99.Yuan, W.C. et al. A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell 20, 214-228 (2011). 100.Lin, Y.C. et al. SCP phosphatases suppress renal cell carcinoma by stabilizing PML and inhibiting mTOR/HIF signaling. Cancer Res 74, 6935-6946 (2014). 101.Landesman-Bollag, E. et al. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20, 3247-3257 (2001). 102.Seldin, D.C. & Leder, P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267, 894-897 (1995). 103.Scaglioni, P.P. et al. CK2 mediates phosphorylation and ubiquitin-mediated degradation of the PML tumor suppressor. Mol Cell Biochem 316, 149-154 (2008). 104.Rabellino, A. et al. The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Res 72, 2275-2284 (2012). 105.Lim, J.H., Liu, Y., Reineke, E. & Kao, H.Y. Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover. J Biol Chem 286, 44403-44411 (2011). 106.Fanelli, M. et al. The coiled-coil domain is the structural determinant for mammalian homologues of Drosophila Sina-mediated degradation of promyelocytic leukemia protein and other tripartite motif proteins by the proteasome. J Biol Chem 279, 5374-5379 (2004). 107.Guan, D., Factor, D., Liu, Y., Wang, Z. & Kao, H.Y. The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene 32, 3819-3828 (2013). 108.Wu, H.C. et al. USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nat Commun 5, 3214 (2014). 109.Geoffroy, M.C. & Chelbi-Alix, M.K. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 31, 145-158 (2011). 110.Tavalai, N. & Stamminger, T. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses 1, 1240-1264 (2009). 111.Reichelt, M. et al. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7, e1001266 (2011). 112.Chelbi-Alix, M.K. et al. Induction of the PML protein by interferons in normal and APL cells. Leukemia 9, 2027-2033 (1995). 113.Chen, Y., Wright, J., Meng, X. & Leppard, K.N. Promyelocytic Leukemia Protein Isoform II Promotes Transcription Factor Recruitment To Activate Interferon Beta and Interferon-Responsive Gene Expression. Mol Cell Biol 35, 1660-1672 (2015). 114.Ulbricht, T. et al. PML promotes MHC class II gene expression by stabilizing the class II transactivator. J Cell Biol 199, 49-63 (2012). 115.Lunardi, A. et al. A Role for PML in Innate Immunity. Genes Cancer 2, 10-19 (2011). 116.Palibrk, V. et al. PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model. Cell Death Dis 7, e2320 (2016). 117.Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883-899 (2010). 118.Quail, D.F. & Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423-1437 (2013). 119.Balkwill, F.R., Capasso, M. & Hagemann, T. The tumor microenvironment at a glance. J Cell Sci 125, 5591-5596 (2012). 120.Levental, K.R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906 (2009). 121.Wilgus, M.L. et al. Lysyl oxidase: a lung adenocarcinoma biomarker of invasion and survival. Cancer 117, 2186-2191 (2011). 122.Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer 9, 239-252 (2009). 123.Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539-545 (2001). 124.Sangiovanni, A. et al. Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology 126, 1005-1014 (2004). 125.Stewart, T., Tsai, S.C., Grayson, H., Henderson, R. & Opelz, G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346, 796-798 (1995). 126.Gallagher, B., Wang, Z., Schymura, M.J., Kahn, A. & Fordyce, E.J. Cancer incidence in New York State acquired immunodeficiency syndrome patients. Am J Epidemiol 154, 544-556 (2001). 127.Whiteside, T.L. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother 63, 67-72 (2014). 128.von Boehmer, H. & Daniel, C. Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov 12, 51-63 (2013). 129.Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R. & Johansson, C.C. Regulatory T cells in cancer. Adv Cancer Res 107, 57-117 (2010). 130.Curiel, T.J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942-949 (2004). 131.Jiang, Y. et al. FOXP3+ lymphocyte density in pancreatic cancer correlates with lymph node metastasis. PLoS One 9, e106741 (2014). 132.Leffers, N. et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58, 449-459 (2009). 133.Shang, B., Liu, Y., Jiang, S.J. & Liu, Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5, 15179 (2015). 134.Sayour, E.J. et al. Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother 64, 419-427 (2015). 135.Tang, Y. et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS One 9, e91551 (2014). 136.Tao, H. et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 75, 95-101 (2012). 137.Haas, M. et al. Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. BMC Gastroenterol 9, 65 (2009). 138.Salama, P. et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27, 186-192 (2009). 139.Chaudhary, B. & Elkord, E. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines (Basel) 4 (2016). 140.Schmidt, A., Oberle, N. & Krammer, P.H. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 3, 51 (2012). 141.Shevach, E.M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636-645 (2009). 142.Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D.I. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol 37, 208-220 (2016). 143.Ostrand-Rosenberg, S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18, 11-18 (2008). 144.Marvel, D. & Gabrilovich, D.I. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125, 3356-3364 (2015). 145.Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6, 1670-1690 (2014). 146.Murdoch, C., Giannoudis, A. & Lewis, C.E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224-2234 (2004). 147.Noy, R. & Pollard, J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49-61 (2014). 148.Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4, e6562 (2009). 149.Bonde, A.K., Tischler, V., Kumar, S., Soltermann, A. & Schwendener, R.A. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 12, 35 (2012). 150.Condeelis, J. & Pollard, J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263-266 (2006). 151.Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24, 241-255 (2010). 152.Condeelis, J. & Segall, J.E. Intravital imaging of cell movement in tumours. Nat Rev Cancer 3, 921-930 (2003). 153.Wyckoff, J.B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67, 2649-2656 (2007). 154.Almholt, K. et al. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 113, 525-532 (2005). 155.Condeelis, J. & Weissleder, R. In vivo imaging in cancer. Cold Spring Harb Perspect Biol 2, a003848 (2010). 156.Sidani, M., Wyckoff, J., Xue, C., Segall, J.E. & Condeelis, J. Probing the microenvironment of mammary tumors using multiphoton microscopy. J Mammary Gland Biol Neoplasia 11, 151-163 (2006). 157.Gil-Bernabe, A.M. et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119, 3164-3175 (2012). 158.Cortez-Retamozo, V. et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 109, 2491-2496 (2012). 159.Qian, B.Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222-225 (2011). 160.Coffelt, S.B., Wellenstein, M.D. & de Visser, K.E. Neutrophils in cancer: neutral no more. Nat Rev Cancer 16, 431-446 (2016). 161.Bekes, E.M. et al. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 179, 1455-1470 (2011). 162.Rotondo, R. et al. IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer 125, 887-893 (2009). 163.Fridlender, Z.G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 16, 183-194 (2009). 164.Mantovani, A., Cassatella, M.A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11, 519-531 (2011). 165.Sionov, R.V., Fridlender, Z.G. & Granot, Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron 8, 125-158 (2015). 166.Powell, D.R. & Huttenlocher, A. Neutrophils in the Tumor Microenvironment. Trends Immunol 37, 41-52 (2016). 167.Gardner, A. & Ruffell, B. Dendritic Cells and Cancer Immunity. Trends Immunol 37, 855-865 (2016). 168.Lotze, M.T. Getting to the source: dendritic cells as therapeutic reagents for the treatment of patients with cancer. Ann Surg 226, 1-5 (1997). 169.Lijun, Z. et al. Tumor-infiltrating dendritic cells may be used as clinicopathologic prognostic factors in endometrial carcinoma. Int J Gynecol Cancer 22, 836-841 (2012). 170.Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu Rev Immunol 21, 685-711 (2003). 171.Gabrilovich, D.I., Nadaf, S., Corak, J., Berzofsky, J.A. & Carbone, D.P. Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170, 111-119 (1996). 172.Chaux, P., Moutet, M., Faivre, J., Martin, F. & Martin, M. Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Invest 74, 975-983 (1996). 173.Tourkova, I.L., Shurin, G.V., Wei, S. & Shurin, M.R. Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol 178, 7787-7793 (2007). 174.Shurin, M.R. et al. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25, 333-356 (2006). 175.Morvan, M.G. & Lanier, L.L. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 16, 7-19 (2016). 176.Lanier, L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9, 495-502 (2008). 177.Bix, M. et al. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349, 329-331 (1991). 178.Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165-171 (2001). 179.Roder, J.C. et al. A new immunodeficiency disorder in humans involving NK cells. Nature 284, 553-555 (1980). 180.Sullivan, J.L., Byron, K.S., Brewster, F.E. & Purtilo, D.T. Deficient natural killer cell activity in x-linked lymphoproliferative syndrome. Science 210, 543-545 (1980). 181.Gorelik, E., Wiltrout, R.H., Okumura, K., Habu, S. & Herberman, R.B. Role of NK cells in the control of metastatic spread and growth of tumor cells in mice. Int J Cancer 30, 107-112 (1982). 182.Nakajima, T., Mizushima, N., Nakamura, J. & Kanai, K. Surface markers of NK cells in peripheral blood of patients with cirrhosis and hepatocellular carcinoma. Immunol Lett 13, 7-10 (1986). 183.Schantz, S.P., Shillitoe, E.J., Brown, B. & Campbell, B. Natural killer cell activity and head and neck cancer: a clinical assessment. J Natl Cancer Inst 77, 869-875 (1986). 184.Spinner, M.A. et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123, 809-821 (2014). 185.Gineau, L. et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122, 821-832 (2012). 186.Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734-738 (2002). 187.Kaiser, B.K. et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447, 482-486 (2007). 188.Salih, H.R., Rammensee, H.G. & Steinle, A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169, 4098-4102 (2002). 189.Wu, J.D. et al. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114, 560-568 (2004). 190.Crane, C.A. et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc Natl Acad Sci U S A 111, 12823-12828 (2014). 191.Champsaur, M. & Lanier, L.L. Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235, 267-285 (2010). 192.Oppenheim, D.E. et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6, 928-937 (2005). 193.Wilson, E.B. et al. Human tumour immune evasion via TGF-beta blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One 6, e22842 (2011). 194.Holt, D., Ma, X., Kundu, N. & Fulton, A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol Immunother 60, 1577-1586 (2011). 195.Pietra, G. et al. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res 72, 1407-1415 (2012). 196.Hoskin, D.W., Mader, J.S., Furlong, S.J., Conrad, D.M. & Blay, J. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int J Oncol 32, 527-535 (2008). 197.Kopp, H.G., Placke, T. & Salih, H.R. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69, 7775-7783 (2009). 198.Placke, T., Salih, H.R. & Kopp, H.G. GITR ligand provided by thrombopoietic cells inhibits NK cell antitumor activity. J Immunol 189, 154-160 (2012). 199.Placke, T., Kopp, H.G. & Salih, H.R. The wolf in sheep''s clothing: Platelet-derived "pseudo self" impairs cancer cell "missing self" recognition by NK cells. Oncoimmunology 1, 557-559 (2012). 200.Placke, T., Kopp, H.G. & Salih, H.R. Modulation of natural killer cell anti-tumor reactivity by platelets. J Innate Immun 3, 374-382 (2011). 201.Antonioli, L., Pacher, P., Vizi, E.S. & Hasko, G. CD39 and CD73 in immunity and inflammation. Trends Mol Med 19, 355-367 (2013). 202.Beavis, P.A., Stagg, J., Darcy, P.K. & Smyth, M.J. CD73: a potent suppressor of antitumor immune responses. Trends Immunol 33, 231-237 (2012). 203.Synnestvedt, K. et al. Ecto-5''-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110, 993-1002 (2002). 204.Antonioli, L., Yegutkin, G.G., Pacher, P., Blandizzi, C. & Hasko, G. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2, 95-109 (2016). 205.Olmo, N. et al. Modulation of 5''-nucleotidase activity in plasma membranes and intact cells by the extracellular matrix proteins laminin and fibronectin. Biochem J 282 ( Pt 1), 181-188 (1992). 206.Zhi, X. et al. RNA interference of ecto-5''-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin Exp Metastasis 24, 439-448 (2007). 207.Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011). 208.Young, A., Mittal, D., Stagg, J. & Smyth, M.J. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4, 879-888 (2014). 209.Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204, 1257-1265 (2007). 210.Ohta, A. et al. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol 183, 5487-5493 (2009). 211.Stagg, J. & Smyth, M.J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346-5358 (2010). 212.Novitskiy, S.V. et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112, 1822-1831 (2008). 213.Sadej, R., Spychala, J. & Skladanowski, A.C. Ecto-5''-nucleotidase (eN, CD73) is coexpressed with metastasis promoting antigens in human melanoma cells. Nucleosides Nucleotides Nucleic Acids 25, 1119-1123 (2006). 214.Zhou, P. et al. Overexpression of Ecto-5''-nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biol Ther 6, 426-431 (2007). 215.Wang, L. et al. Ecto-5''-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J Cancer Res Clin Oncol 134, 365-372 (2008). 216.Stagg, J. et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 107, 1547-1552 (2010). 217.Desmet, C.J. et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci U S A 110, 5139-5144 (2013). 218.Ntantie, E. et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal 6, ra39 (2013). 219.Xiong, L., Wen, Y., Miao, X. & Yang, Z. NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer. Cell Tissue Res 355, 365-374 (2014). 220.Clayton, A., Al-Taei, S., Webber, J., Mason, M.D. & Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187, 676-683 (2011). 221.Smith, H.W. & Marshall, C.J. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11, 23-36 (2010). 222.Binder, B.R., Mihaly, J. & Prager, G.W. uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist''s view. Thromb Haemost 97, 336-342 (2007). 223.Duffy, M.J. The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 10, 39-49 (2004). 224.Choong, P.F. & Nadesapillai, A.P. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res, S46-58 (2003). 225.Noh, H., Hong, S. & Huang, S. Role of urokinase receptor in tumor progression and development. Theranostics 3, 487-495 (2013). 226.Jo, M. et al. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. J Biol Chem 284, 22825-22833 (2009). 227.Lester, R.D., Jo, M., Montel, V., Takimoto, S. & Gonias, S.L. uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol 178, 425-436 (2007). 228.Gutfeld, O. et al. Expression of serum amyloid A, in normal, dysplastic, and neoplastic human colonic mucosa: implication for a role in colonic tumorigenesis. J Histochem Cytochem 54, 63-73 (2006). 229.Jensen, L.E. & Whitehead, A.S. Regulation of serum amyloid A protein expression during the acute-phase response. Biochem J 334 ( Pt 3), 489-503 (1998). 230.Malle, E. & De Beer, F.C. Human serum amyloid A (SAA) protein: a prominent acute-phase reactant for clinical practice. Eur J Clin Invest 26, 427-435 (1996). 231.Urieli-Shoval, S., Linke, R.P. & Matzner, Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol 7, 64-69 (2000). 232.Rosenthal, C.J. & Sullivan, L.M. Serum amyloid A to monitor cancer dissemination. Ann Intern Med 91, 383-390 (1979). 233.Weinstein, P.S. et al. Acute-phase proteins or tumour markers: the role of SAA, SAP, CRP and CEA as indicators of metastasis in a broad spectrum of neoplastic diseases. Scand J Immunol 19, 193-198 (1984). 234.Biran, H., Friedman, N., Neumann, L., Pras, M. & Shainkin-Kestenbaum, R. Serum amyloid A (SAA) variations in patients with cancer: correlation with disease activity, stage, primary site, and prognosis. J Clin Pathol 39, 794-797 (1986). 235.Sung, H.J. et al. Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer. J Proteome Res 10, 1383-1395 (2011). 236.Hansen, M.T. et al. A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 34, 424-435 (2015). 237.Preciado-Patt, L. et al. Inhibition of cell adhesion to glycoproteins of the extracellular matrix by peptides corresponding to serum amyloid A. Toward understanding the physiological role of an enigmatic protein. Eur J Biochem 223, 35-42 (1994). 238.Michaeli, A. et al. Serum amyloid A enhances plasminogen activation: implication for a role in colon cancer. Biochem Biophys Res Commun 368, 368-373 (2008). 239.Malle, E., Sodin-Semrl, S. & Kovacevic, A. Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci 66, 9-26 (2009). 240.Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J Clin 62, 10-29 (2012). 241.Hanahan, D. & Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322 (2012). 242.Hynes, R.O. The extracellular matrix: not just pretty fibrils. Science 326, 1216-1219 (2009). 243.Lu, P., Weaver, V.M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196, 395-406 (2012). 244.Shiao, S.L., Ganesan, A.P., Rugo, H.S. & Coussens, L.M. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25, 2559-2572 (2011). 245.Salomoni, P., Ferguson, B.J., Wyllie, A.H. & Rich, T. New insights into the role of PML in tumour suppression. Cell Res 18, 622-640 (2008). 246.Sahin, U., Lallemand-Breitenbach, V. & de The, H. PML nuclear bodies: regulation, function and therapeutic perspectives. J Pathol 234, 289-291 (2014). 247.Chen, R.H., Lee, Y.R. & Yuan, W.C. The role of PML ubiquitination in human malignancies. J Biomed Sci 19, 81 (2012). 248.Chen, H.Y. et al. KLHL39 suppresses colon cancer metastasis by blocking KLHL20-mediated PML and DAPK ubiquitination. Oncogene 34, 5141-5151 (2015). 249.Higa, L.A. et al. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 8, 1277-1283 (2006). 250.Yeh, C.T. et al. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med 186, 1180-1188 (2012). 251.Wang, W.J. et al. The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR. Mol Cell 27, 701-716 (2007). 252.DuPage, M., Dooley, A.L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4, 1064-1072 (2009). 253.Krishnamachary, B. et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63, 1138-1143 (2003). 254.Laufs, S., Schumacher, J. & Allgayer, H. Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 5, 1760-1771 (2006). 255.Carmeliet, P. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 17, 439-444 (1997). 256.Condemine, W. et al. Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 66, 6192-6198 (2006). 257.O''Reilly, M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-328 (1994). 258.Csoka, B. et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 26, 376-386 (2012). 259.Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun 5, 3056 (2014). 260.Li, X., Kostareli, E., Suffner, J., Garbi, N. & Hammerling, G.J. Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur J Immunol 40, 3325-3335 (2010). 261.Teng, M.W. et al. Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res 70, 7800-7809 (2010). 262.Emanuele, M.J. et al. Global identification of modular cullin-RING ligase substrates. Cell 147, 459-474 (2011). 263.Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9, 517-531 (2008). 264.Rabellino, A. & Scaglioni, P.P. PML Degradation: Multiple Ways to Eliminate PML. Front Oncol 3, 60 (2013). 265.Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52-67 (2010). 266.Mazar, A.P. Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res 14, 5649-5655 (2008). 267.El Asmi, F. et al. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog 10, e1003975 (2014). 268.Herzberg, B., Campo, M.J. & Gainor, J.F. Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Oncologist 22, 81-88 (2017). 269.Johnson, D.B., Rioth, M.J. & Horn, L. Immune checkpoint inhibitors in NSCLC. Curr Treat Options Oncol 15, 658-669 (2014). 270.Vesely, M.D., Kershaw, M.H., Schreiber, R.D. & Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29, 235-271 (2011). 271.Allard, B., Pommey, S., Smyth, M.J. & Stagg, J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19, 5626-5635 (2013). 272.Beavis, P.A. et al. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunol Res 3, 506-517 (2015). 273.Beavis, P.A. et al. CD73: A potential biomarker for anti-PD-1 therapy. Oncoimmunology 4, e1046675 (2015).
|