|
1Geim, A. K. Graphene: status and prospects. science 324, 1530-1534 (2009). 2Chen, Z., Xu, C., Ma, C., Ren, W. & Cheng, H. M. Lightweight and flexible graphene foam composites for high‐performance electromagnetic interference shielding. Advanced materials 25, 1296-1300 (2013). 3Xu, Y. et al. A hybrid material of graphene and poly (3, 4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Research 2, 343-348 (2009). 4Teweldebrhan, D. & Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Applied Physics Letters 94, 013101 (2009). 5Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. nature 438, 197 (2005). 6Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308-1308 (2008). 7Haider, G. et al. Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials 26, 620-628 (2016). 8Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature nanotechnology 7, 363 (2012). 9Lee, Y. et al. Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors. Carbon 88, 165-172 (2015). 10Dang, V. Q. et al. Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector. Small 11, 3054-3065 (2015). 11Zhu, Z. et al. Fiber‐Shaped ZnO/Graphene Schottky Photodetector with Strain Effect. Advanced Materials Interfaces, 1800136 (2018). 12Sahatiya, P., Jones, S. S., Gomathi, P. T. & Badhulika, S. Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation. 2D Materials 4, 025053 (2017). 13Xie, C. & Yan, F. Perovskite/poly (3-hexylthiophene)/graphene multiheterojunction phototransistors with ultrahigh gain in broadband wavelength region. ACS applied materials & interfaces 9, 1569-1576 (2017). 14Aydın, H., Kalkan, S., Varlikli, C. & Çelebi, C. P3HT–graphene bilayer electrode for Schottky junction photodetectors. Nanotechnology 29, 145502 (2018). 15Özgür, Ü. et al. A comprehensive review of ZnO materials and devices. Journal of applied physics 98, 11 (2005). 16Smijs, T. G. & Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, science and applications 4, 95 (2011). 17Miller, S. et al. Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. Journal of materials chemistry 18, 306-312 (2008). 18Saini, V. et al. Electrical, optical, and morphological properties of P3HT-MWNT nanocomposites prepared by in situ polymerization. The Journal of Physical Chemistry C 113, 8023-8029 (2009). 19Oh, N. et al. Double-heterojunction nanorods. Nature communications 5, 3642 (2014). 20Roul, B., Kumar, M., Rajpalke, M. K., Bhat, T. N. & Krupanidhi, S. Binary group III-nitride based heterostructures: band offsets and transport properties. Journal of Physics D: Applied Physics 48, 423001 (2015). 21Niles, D. et al. Understanding and controlling heterojunction band discontinuities. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, 962-964 (1986). 22Perea, D. E., Li, N., Dickerson, R. M., Misra, A. & Picraux, S. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying. Nano letters 11, 3117-3122 (2011). 23Jang, E. et al. White‐light‐emitting diodes with quantum dot color converters for display backlights. Advanced materials 22, 3076-3080 (2010). 24Pal, B. N. et al. ‘Giant’CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano letters 12, 331-336 (2011). 25Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature photonics 7, 407 (2013). 26Shen, J. et al. High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. Nanoscale 9, 6020-6025 (2017). 27Yun, J.-H., Kim, J. & Park, Y. C. Transparent conductor-Si pillars heterojunction photodetector. Journal of Applied Physics 116, 064904 (2014). 28Lloyd-Hughes, J. & Jeon, T.-I. A review of the terahertz conductivity of bulk and nano-materials. Journal of Infrared, Millimeter, and Terahertz Waves 33, 871-925 (2012). 29Riedl, C. Epitaxial Graphene on Silicon Carbide Surfaces: Growth, Characterization, Doping and Hydrogen Intercalation. (2010). 30Krane, N. Preparation of Graphene Selected Topics in Physics: Physics of Nanoscale Carbon. Growth Lakel 4, 1-5 (1993). 31Juang, Z.-Y. et al. Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 48, 3169-3174 (2010). 32Maffucci, A. & Miano, G. Electrical properties of graphene for interconnect applications. Applied Sciences 4, 305-317 (2014). 33Geim, A. K. & Novoselov, K. S. in Nanoscience and Technology: A Collection of Reviews from Nature Journals 11-19 (World Scientific, 2010). 34Haider, G. et al. Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials 26, 620-628 (2016). 35Janotti, A. & Van de Walle, C. G. Fundamentals of zinc oxide as a semiconductor. Reports on progress in physics 72, 126501 (2009). 36Kumar, H. & Rani, R. Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. International Letters of Chemistry, Physics and Astronomy 14, 26--36 (2013). 37Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999). 38Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nature communications 7, 11585 (2016). 39Zhang, L., Yang, D., Yang, S. & Zou, B. Solution-processed P3HT-based photodetector with field-effect transistor configuration. Applied Physics A 116, 1511-1516 (2014). 40http://www.substech.com/dokuwiki/doku.php?id=electropolishing. 41https://sites.google.com/site/nanomodern/Home/CNT/syncnt/cvd. 42Bhaviripudi, S., Jia, X., Dresselhaus, M. S. & Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano letters 10, 4128-4133 (2010). 43Low, F. W. & Lai, C. W. Recent developments of graphene-TiO 2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews 82, 103-125 (2018). 44https://www.nixsensor.com/free-color-converter/. 45Koizumi, T.-a. & Kanbara, T. in Organometallic Reactions and Polymerization 271-301 (Springer, 2014). 46Stefan, M. C., Bhatt, M. P., Sista, P. & Magurudeniya, H. D. Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly (3-hexylthiophene). Polymer Chemistry 3, 1693-1701 (2012). 47Wang, H. et al. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous materials 141, 645-652 (2007). 48Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid state communications 143, 47-57 (2007). 49Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Physical review letters 97, 187401 (2006). 50Graf, D. et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano letters 7, 238-242 (2007). 51Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 9, 30-35 (2008). 52Wang, H. et al. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous materials 141, 645-652 (2007). 53Lafalce, E., Toglia, P., Zhang, C. & Jiang, X. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6, 6]–phenyl-C61-butyric acid methyl ester composite. Applied Physics Letters 100, 119 (2012). 54Shearer, C. J., Slattery, A. D., Stapleton, A. J., Shapter, J. G. & Gibson, C. T. Accurate thickness measurement of graphene. Nanotechnology 27, 125704 (2016). 55Varykhalov, A. et al. Tunable Fermi level and hedgehog spin texture in gapped graphene. Nature communications 6, 7610 (2015). 56Cheng, S.-H. et al. All Carbon-Based Photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Scientific reports 3, 2694 (2013). 57Tan, W. C., Shih, W. H. & Chen, Y. F. A Highly Sensitive Graphene‐Organic Hybrid Photodetector with a Piezoelectric Substrate. Advanced Functional Materials 24, 6818-6825 (2014). 58Zeng, L. et al. High-responsivity UV-vis photodetector based on transferable WS 2 film deposited by magnetron sputtering. Scientific reports 6, 20343 (2016). 59Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS 2. Nature nanotechnology 8, 497 (2013). 60Guo, W. et al. Oxygen‐Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small 9, 3031-3036 (2013).
|