跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃元甫
研究生(外文):Yuan-Fu Huang
論文名稱:石墨烯在三層異質結構中的光電性質
論文名稱(外文):Optoelectronic Properties of Graphene Triple Heterojunction
指導教授:陳永芳陳永芳引用關係謝馬利歐
指導教授(外文):Yang-Fang ChenMario Hofmann
口試委員:林泰源
口試委員(外文):TAI-YUAN Lin
口試日期:2018-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:52
中文關鍵詞:異質接面光感測器石墨烯聚(3-己烷噻吩)氧化鋅奈米粒子光電元件
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
異質接面發生於兩種不相同材料的交界,我們經常使用其特殊的電子和光電性質來設計元件。在這裡,我們設計了一種三重異質結構,將石墨烯夾入p型的聚(3-己烷噻吩)(P3HT)和n型的氧化鋅奈米粒子(ZnO NPs)之間。由於石墨烯的極薄性質,熱平衡中,兩層介面中的電場會穿過石墨烯互相影響兩邊半導體的光電性質。
在本篇論文中,我們仔細地探討了三層物質在雷射照射下互相影響的情形,藉由研究的結果,我們演示了我們的樣品可藉由一道光當成背景來調變整個樣品對於另外一道光的靈敏度,另外,由於我們使用的兩個半導體材料有著不同的吸收波段,造成我們在照射不同波段的雷射時,我們的元件會有上升及下降兩種不同的光電反應,藉由這種性質,我們演示了我們的元件對於不同顏色的光有著可辨識性,並且能夠對於從紫外光到500奈米附近的可見光都有著光電反應。
我們成功地討論了這樣特殊的異質結構,並且演示了這個結構可以應用於未來光電領域的可能性。
Heterostructure, the interface between two non-identical materials are widely used efficient strategy to engineer the electronic and optoelectronic devices. Herein, we have designed a triple heterojunction using graphene sandwiched by p- and n-type semiconductors, P3HT and ZnO. Owing to the atomically thin nature of graphene, the electric field generated at the triple interface in thermal equilibrium can penetrate through graphene to interfere the optoelectronic properties of the semiconducting layers. The existence of unique Dirac cone at the junction gives rise several not yet realized properties. The output performance of such heterojunction based phototransistor can be tuned optically, where external photons can be used as a gate to the detection of other photons carrying different energies. In addition to the broad bandwidth of photon detection, we have demonstrated an efficient color sensitivity of the heterostructure. In the viewpoint of robust global demand for novel functional materials and devices, our strategy paves an important step towards the realization of high performance, multifunctional optoelectronic devices.
口試委員會審定書 I
致謝 II
中文摘要論文 IV
Abstract V
Contents VI
List of Figures VIII
Chapter 1 Introduction
Introduction 1
Reference 3
Chapter 2 Theoretical Background
2.1 Heterojunction 6
2.2 Graphene: 2D Material 8
2.3 Zinc Oxide Nanoparticles & Poly (3-hexylthiophene) 12
Reference 13
Chapter 3 Experimental Details
3.1 Copper Polishment System 16
3.2 Chemical Vapor Deposition System 18
3.3 Thermal Evaporation 20
3.4 Current-Time (I-T) measurement 22
3.5 ADATA Aura RGB Bulb 24
3.6 CIE Diagram 25
3.7 Material Synthesis 26
3.8 Device Fabrication 29
Reference 31
Chapter 4 Results and Discussion
4.1 Device Structures and Characteristics of Component Materials 32
4.2 Responsivity of Device Performance 35
4.3 Responsivity of One Light under the Other One Keep Shining 40
4.4 Application 47
Reference 50
Chapter 5 Conclusion
Conclusion 52
1Geim, A. K. Graphene: status and prospects. science 324, 1530-1534 (2009).
2Chen, Z., Xu, C., Ma, C., Ren, W. & Cheng, H. M. Lightweight and flexible graphene foam composites for high‐performance electromagnetic interference shielding. Advanced materials 25, 1296-1300 (2013).
3Xu, Y. et al. A hybrid material of graphene and poly (3, 4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Research 2, 343-348 (2009).
4Teweldebrhan, D. & Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Applied Physics Letters 94, 013101 (2009).
5Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. nature 438, 197 (2005).
6Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308-1308 (2008).
7Haider, G. et al. Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials 26, 620-628 (2016).
8Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature nanotechnology 7, 363 (2012).
9Lee, Y. et al. Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors. Carbon 88, 165-172 (2015).
10Dang, V. Q. et al. Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector. Small 11, 3054-3065 (2015).
11Zhu, Z. et al. Fiber‐Shaped ZnO/Graphene Schottky Photodetector with Strain Effect. Advanced Materials Interfaces, 1800136 (2018).
12Sahatiya, P., Jones, S. S., Gomathi, P. T. & Badhulika, S. Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation. 2D Materials 4, 025053 (2017).
13Xie, C. & Yan, F. Perovskite/poly (3-hexylthiophene)/graphene multiheterojunction phototransistors with ultrahigh gain in broadband wavelength region. ACS applied materials & interfaces 9, 1569-1576 (2017).
14Aydın, H., Kalkan, S., Varlikli, C. & Çelebi, C. P3HT–graphene bilayer electrode for Schottky junction photodetectors. Nanotechnology 29, 145502 (2018).
15Özgür, Ü. et al. A comprehensive review of ZnO materials and devices. Journal of applied physics 98, 11 (2005).
16Smijs, T. G. & Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, science and applications 4, 95 (2011).
17Miller, S. et al. Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. Journal of materials chemistry 18, 306-312 (2008).
18Saini, V. et al. Electrical, optical, and morphological properties of P3HT-MWNT nanocomposites prepared by in situ polymerization. The Journal of Physical Chemistry C 113, 8023-8029 (2009).
19Oh, N. et al. Double-heterojunction nanorods. Nature communications 5, 3642 (2014).
20Roul, B., Kumar, M., Rajpalke, M. K., Bhat, T. N. & Krupanidhi, S. Binary group III-nitride based heterostructures: band offsets and transport properties. Journal of Physics D: Applied Physics 48, 423001 (2015).
21Niles, D. et al. Understanding and controlling heterojunction band discontinuities. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, 962-964 (1986).
22Perea, D. E., Li, N., Dickerson, R. M., Misra, A. & Picraux, S. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying. Nano letters 11, 3117-3122 (2011).
23Jang, E. et al. White‐light‐emitting diodes with quantum dot color converters for display backlights. Advanced materials 22, 3076-3080 (2010).
24Pal, B. N. et al. ‘Giant’CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano letters 12, 331-336 (2011).
25Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature photonics 7, 407 (2013).
26Shen, J. et al. High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. Nanoscale 9, 6020-6025 (2017).
27Yun, J.-H., Kim, J. & Park, Y. C. Transparent conductor-Si pillars heterojunction photodetector. Journal of Applied Physics 116, 064904 (2014).
28Lloyd-Hughes, J. & Jeon, T.-I. A review of the terahertz conductivity of bulk and nano-materials. Journal of Infrared, Millimeter, and Terahertz Waves 33, 871-925 (2012).
29Riedl, C. Epitaxial Graphene on Silicon Carbide Surfaces: Growth, Characterization, Doping and Hydrogen Intercalation. (2010).
30Krane, N. Preparation of Graphene Selected Topics in Physics: Physics of Nanoscale Carbon. Growth Lakel 4, 1-5 (1993).
31Juang, Z.-Y. et al. Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 48, 3169-3174 (2010).
32Maffucci, A. & Miano, G. Electrical properties of graphene for interconnect applications. Applied Sciences 4, 305-317 (2014).
33Geim, A. K. & Novoselov, K. S. in Nanoscience and Technology: A Collection of Reviews from Nature Journals 11-19 (World Scientific, 2010).
34Haider, G. et al. Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials 26, 620-628 (2016).
35Janotti, A. & Van de Walle, C. G. Fundamentals of zinc oxide as a semiconductor. Reports on progress in physics 72, 126501 (2009).
36Kumar, H. & Rani, R. Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. International Letters of Chemistry, Physics and Astronomy 14, 26--36 (2013).
37Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).
38Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nature communications 7, 11585 (2016).
39Zhang, L., Yang, D., Yang, S. & Zou, B. Solution-processed P3HT-based photodetector with field-effect transistor configuration. Applied Physics A 116, 1511-1516 (2014).
40http://www.substech.com/dokuwiki/doku.php?id=electropolishing.
41https://sites.google.com/site/nanomodern/Home/CNT/syncnt/cvd.
42Bhaviripudi, S., Jia, X., Dresselhaus, M. S. & Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano letters 10, 4128-4133 (2010).
43Low, F. W. & Lai, C. W. Recent developments of graphene-TiO 2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews 82, 103-125 (2018).
44https://www.nixsensor.com/free-color-converter/.
45Koizumi, T.-a. & Kanbara, T. in Organometallic Reactions and Polymerization 271-301 (Springer, 2014).
46Stefan, M. C., Bhatt, M. P., Sista, P. & Magurudeniya, H. D. Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly (3-hexylthiophene). Polymer Chemistry 3, 1693-1701 (2012).
47Wang, H. et al. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous materials 141, 645-652 (2007).
48Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid state communications 143, 47-57 (2007).
49Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Physical review letters 97, 187401 (2006).
50Graf, D. et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano letters 7, 238-242 (2007).
51Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 9, 30-35 (2008).
52Wang, H. et al. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous materials 141, 645-652 (2007).
53Lafalce, E., Toglia, P., Zhang, C. & Jiang, X. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6, 6]–phenyl-C61-butyric acid methyl ester composite. Applied Physics Letters 100, 119 (2012).
54Shearer, C. J., Slattery, A. D., Stapleton, A. J., Shapter, J. G. & Gibson, C. T. Accurate thickness measurement of graphene. Nanotechnology 27, 125704 (2016).
55Varykhalov, A. et al. Tunable Fermi level and hedgehog spin texture in gapped graphene. Nature communications 6, 7610 (2015).
56Cheng, S.-H. et al. All Carbon-Based Photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Scientific reports 3, 2694 (2013).
57Tan, W. C., Shih, W. H. & Chen, Y. F. A Highly Sensitive Graphene‐Organic Hybrid Photodetector with a Piezoelectric Substrate. Advanced Functional Materials 24, 6818-6825 (2014).
58Zeng, L. et al. High-responsivity UV-vis photodetector based on transferable WS 2 film deposited by magnetron sputtering. Scientific reports 6, 20343 (2016).
59Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS 2. Nature nanotechnology 8, 497 (2013).
60Guo, W. et al. Oxygen‐Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small 9, 3031-3036 (2013).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊