跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:韓凱霖
研究生(外文):HAN, KAI-LIN
論文名稱:具溫度補償自我振盪之高轉換率時域溫度感測器晶片設計
論文名稱(外文):Chip design of a high conversion rate time-domain temperature sensor with temperature compensated oscillator
指導教授:李文達李文達引用關係
指導教授(外文):LEE, WEN-TA
口試委員:曾德樟鄭群星
口試委員(外文):TSENG, DER-CHANGCHENG, CHYUN-SHIN
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:81
中文關鍵詞:溫度補償振盪器熱管理高轉換率時域溫度感測器
外文關鍵詞:Temperature compensated self-oscillationThermal managementHigh conversion rateTime-domain temperature sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
隨著積體電路技術的進步,電子儀器逐漸趨向於高電路密度的設計,而在高電路密度下,電路將產生許多散熱上的問題,為此需要由溫度感測器來對晶片進行熱管理控制。因此,本論文提出一個具溫度補償的自我振盪時域溫度感測器,採用具時間放大的溫度相依延遲線來延遲,相較於傳統時域溫度感測器的溫度延遲線,可以大量減少電晶體使用數量。並加上溫度補償振盪器,以提供一不隨溫度及電壓變動的高頻訊號供時域溫度感測器使用,同時減少外部提供訊號產生之雜訊及訊號產生器的設備費用。
本晶片設計以TSMC 0.18μm 1P6M CMOS製程來實現,晶片的工作電壓為直流1.2伏特。振盪器輸出頻率值為602 MHz,在146 kHz的轉換率下,每次轉換的功耗為9.83 nJ,核心電路面積為0.149 mm2,溫度量測範圍為20oC~80 oC之間,而輸出之溫度值解析度為0.48 oC/bit,誤差值落於-0.61 oC ~0.46 oC之間。由模擬結果可知振盪器輸出頻率極為接近系統所需之頻率,而實際量測時溫度感測器具有高轉換率及高解析度,且輸出之數位值無誤,極適合用於系統單晶片做熱管理應用。

With the advancement of integrated circuit technology, increasing number of electronic instruments are designed with high circuit density. In this situation, overheat is a very important issue, so we need a temperature sensor for thermal management. In this thesis, we proposed a high conversion rate time-domain temperature sensor with temperature compensated self-oscillation, which uses a time-amplified temperature-dependent delay line to perform the delay. Compared with the traditional temperature delay line, the time-amplified temperature-dependent delay line can greatly reduce the power consumption and the number of transistors used. We also added a temperature compensated oscillator to provide a high-frequency signal for the temperature sensor and to reduce the costs of the instruments and their noise contribution to the circuit.
This chip has been implemented in the TSMC 0.18μm 1P6M CMOS technology, and the supply voltage is 1.2 V. The oscillator frequency is 602 MHz. At a conversion rate of 146 kHz, the energy consumption per conversion is 9.83 nJ. The core area of chip is 0.149 mm2. The temperature measurement range is from 20 to 80 oC with a resolution of 0.48 oC/bit and a measurement error between -0.61 and 0.46 oC. Based on the simulation results, the oscillation frequency is close to the required system frequency. During the actual measurement, the temperature sensor had high conversion rate and resolution and outputted correct digital codes, making it suitable for thermal management in SoCs.

目 錄

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 溫度補償振盪器與溫度感測器概述 3
2.1 補償電路 3
2.1.1 電壓補償電路 3
2.1.2 溫度補償電路 6
2.2 振盪器介紹 11
2.3 溫度感測器種類介紹 13
2.3.1 溫度感測器參數介紹 14
2.3.2 熱電偶式溫度感測器 16
2.3.3 電阻式溫度感測器 19
2.3.4 熱敏電阻式溫度感測器 20
2.3.5 CMOS積體電路式溫度感測器 21
2.4 智慧型CMOS積體電路式溫度感測器 22
2.4.1 電壓域溫度感測器 22
2.4.2 時域溫度感測器 24
第三章 具溫度補償自我振盪之高轉換率時域溫度感測器 26
3.1 整體系統架構 26
3.1.1 溫度補償弛張振盪器 27
3.1.2 時域溫度感測器 27
3.1.2.1 校準模式 29
3.1.2.2 測量模式 30
3.2振盪器 31
3.2.1 帶差參考電流源 36
3.2.2 RS閂鎖電路 37
3.3 除頻器 38
3.3.1 異步計數器 38
3.3.2 工作週期轉換電路 39
3.4 校準控制器 40
3.4.1 改善判斷電路 40
3.4.2 相位比較器 41
3.4.3 輔助邏輯電路 42
3.4.4 校準計數器 43
3.5 訊號時序調節器 44
3.5.1 防誤判電路 44
3.5.2 改良型可調式溫度相依延遲線 45
3.6 時間-數位轉換器 49
3.7 自我檢測電路 51
第四章 電路模擬及晶片測量 54
4.1 系統區塊電路模擬 54
4.1.1 振盪器模擬 54
4.1.2 除頻器模擬 55
4.1.3 校準控制器模擬 55
4.1.4 訊號時序調節器模擬 58
4.1.5 時間-數位轉換器模擬 59
4.1.6 自我檢測電路模擬 61
4.1.7 整體電路模擬 63
4.2 整體系統電路之佈局與量測 67
4.3 整體電路比較 76
第五章 結論與未來展望 78
參考文獻 79


參考文獻

[1]B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed, OH, USA: McGraw-Hill Education, 2016.
[2]K. Mohri, F. Humphrey, J. Yamasaki, and F. Kinoshita, “Large Barkhausen Effect and Matteucci Effect in Amorphous Magnetostrictive Wires for Pulse Generator Elements,” IEEE Transactions on Magnetics, vol. 21, no. 5, pp. 2017-2019, Sep. 1985.
[3]M. Snelgrove, “Oscillator,” McGraw-Hill Encyclopedia of Science and Technology, 10th Ed., Science Access online service, McGraw-Hill, Retrieved March. 1, 2012.
[4]F. A. Record and J. L. Stiles, “An Analytical Demonstration of Hartley Oscillator Action,” Proceedings of the IRE, vol. 31, no. 6, pp. 287-287, Jun. 1943.
[5]C. Y. Cha and S. G. Lee “A omplementary Colpitts oscillator in CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no.3, pp. 881-887, Mar. 2005.
[6]K. K. Clarke, “Wien Bridge Oscillator Design,” Proceedings of the IRE, vol. 41, no. 2, pp. 246-249, Feb. 1953.
[7]J. C. Hopkins, “Relaxation Oscillator circuits using complementary transistors,” Proceedings of the Institution of Electrical Engineers, vol. 110, no. 4, pp. 690-692, Apr. 1963.
[8]陳瑞和,感測器(修訂版),台灣:全華圖書,2008。
[9]André L. Aita, Michiel A. P. Pertijs, Kofi A. A. Makinwa, Johan H. Huijsing, and Gerard C. M. Meijer, “Low-Power CMOS Smart Temperature Sensor With a Batch-Calibrated Inaccuracy of ±0.25oC (±3σ) From −70oC to 130oC,” IEEE Sensors Journal, vol. 13, no. 5, pp.1840-1848, May. 2013.

[10]K. Souri, Y. Chae, F. Thus, and K. Makinwa, “12.7 A 0.85V 600nW all-CMOS temperature sensor with an inaccuracy of ±0.4°C (3σ) from −40 to 125°C,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 222-223, Feb. 2014.
[11]“Designing An Accurate Temperature-Monitoring System,”
https://electronicsforu.com/electronics-projects/designing-accurate-temperature-monitoring-system, Jan. 2017.
[12]A. Bakker, “CMOS smart temperature sensors - an overview,” SENSORS, 2002 IEEE, vol. 2, pp.1423-1427, Jun. 2002.
[13]A. Bakker and J. H. Huijsing, “Micropower CMOS Temperature Sensor with Digital Output,” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 993-937, Jul. 1996.
[14]J. D. B. Soldera, M. T. Berens, and A. Olmos, “A temperature compensated CMOS relaxation oscillator for low power applications,” 2012 25th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 1-4, Sep. 2012.
[15]謝明學,一個具備單點校正技巧的時域溫度感測器,碩士論文,國立成功大學電資工程學系研究所,台南,2011。
[16]謝孟辰,具單點校正之高轉換率時域溫度感測器晶片設計,碩士論文,國立臺北科技大學電子工程系研究所,台北,2017。
[17]蔣宗佑,具自我檢測之高轉換率時域溫度感測器晶片設計,碩士論文,國立臺北科技大學電子工程系研究所,台北,2018。
[18]Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor 2nd ed, New York:Oxford Unix Press USA, 2010.
[19]P. Chen, C. Chen, Y. Peng, K. Wang, and Y. Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of −0.4°C ∼ +0.6°C Over a 0°C to 90°C Range,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 600-609, Mar. 2010.
[20]P. Chen, S. Chen, Y. Shen, and Y. Peng, “All-Digital Time-Domain Smart Temperature Sensor With an Inter-Batch Inaccuracy of -0.7oC-+0.6oC After One-Point Calibration,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 5, pp. 913-920, May. 2011.
[21]D. Ha, K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, and D. Ham, “Time-Domain CMOS Temperature Sensors With Dual Delay-Locked Loops for Microprocessor Thermal Monitoring,” IEEE Tran. Very Large Scale Integration (VLSI) Systems, vol. 20, no. 9, pp. 1590-1601, Sep. 2012.
[22]Y. J. An, D. H. Jung, K. Ryu, S. H. Woo, and S. O. Jung, “An Energy-Efficient All-Digital Time-Domain-Based CMOS Temperature Sensor for SoC Thermal Management,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 23, no. 8, pp. 1508-1517, Aug. 2015.
[23]S. Pan, Y. Luo, S. H. Shalmany, and K. A. A. Makinwa, “9.1 A resistor-based temperature sensor with a 0.13pJ·K2 resolution FOM,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 158-159, Feb. 2017.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top