|
[1] : Ministry of transportation and communications of the republic of china. http: //www.thb.gov.tw/ (2017) [2] Mimbela, L.E.Y., Klein, L.A.: Summary of vehicle detection and surveillance technolo- gies used in intelligent transportation systems. (2000) [3] Idris, M., Leng, Y., Tamil, E., Noor, N., Razak, Z.: park system: a review of smart parking system and its technology. Inf. Technol. J 8 (2009) 101–113 [4] Geng, Y., Cassandras, C.G.: New“smart parking”system based on resource allocation and reservations. IEEE Transactions on Intelligent Transportation Systems 14 (2013) 1129–1139 [5] Wang, H., He, W.: A reservation-based smart parking system. In: IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS, IEEE (2011) 690–695 [6] Swathy, M., Nirmala, P., Geethu, P.: Survey on vehicle detection and tracking tech- niques in video surveillance. International Journal of Computer Applications 160 (2017) [7] Chintalacheruvu, N., Muthukumar, V., et al.: Video based vehicle detection and its application in intelligent transportation systems. Journal of transportation technologies 2 (2012) 305 [8] Xia, Y., Shi, X., Song, G., Geng, Q., Liu, Y.: Towards improving quality of video- based vehicle counting method for tra c ow estimation. Signal Processing 120 (2016) 672–681 [9] Wen, X., Shao, L., Xue, Y., Fang, W.: A rapid learning algorithm for vehicle classi - cation. Information Sciences 295 (2015) 395–406 [10] Zhan, W., Ji, X.: Algorithm research on moving vehicles detection. Procedia Engineer- ing 15 (2011) 5483–5487 [11] Rashidi, A., Fathi, H., Brilakis, I.: Innovative stereo vision-based approach to generate dense depth map of transportation infrastructure. Transportation Research Record: Journal of the Transportation Research Board (2011) 93–99 [12] Marr, D., Poggio, T.: A computational theory of human stereo vision. Proceedings of the Royal Society of London B: Biological Sciences 204 (1979) 301–328 [13] Hirschmuller, H.: Accurate and e cient stereo processing by semi-global matching and mutual information. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR. Volume 2., IEEE (2005) 807–814 [14] Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine us- ing semi-global matching. In: International Conference on Computer Vision Systems, Springer (2009) 134–143 [15] Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-time stereo vi- sion system using semi-global matching disparity estimation: Architecture and fpga- implementation. In: International Conference on Embedded Computer Systems, SAMOS, IEEE (2010) 93–101 [16] Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Transactions on pattern analysis and machine intelligence 30 (2008) 328–341 [17] Cech, J., Sara, R.: E cient sampling of disparity space for fast and accurate match- ing. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, IEEE (2007) 1–8 [18] Čech, J., Sanchez-Riera, J., Horaud, R.: Scene ow estimation by growing correspon- dence seeds. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, IEEE (2011) 3129–3136 [19] Hung, C.H., Xu, L., Jia, J.: Consistent binocular depth and scene ow with chained temporal pro les. International journal of computer vision 102 (2013) 271–292 [20] Liu, F., Philomin, V.: Disparity estimation in stereo sequences using scene ow. In: BMVC. Volume 1. (2009) 2 [21] Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene ow. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision. Volume 2., IEEE (1999) 722–729 [22] Yan, Z., Xiang, X.: Scene ow estimation: A survey. arXiv preprint arXiv:1612.02590 (2016) [23] Bouguet, J.Y.: Pyramidal implementation of the a ne lucas kanade feature tracker description of the algorithm. Intel Corporation 5 (2001) 4 [24] Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference. Volume 15., Manchester, UK (1988) 10–5244 [25] Zhang, Z.: A exible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence 22 (2000) 1330–1334 [26] : Kinect - wikipedia. https://zh.wikipedia.org/wiki/Kinect (2017) [27] Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. (1981) [28] Han, J., Moraga, C.: The in uence of the sigmoid function parameters on the speed of backpropagation learning. From Natural to Arti cial Neural Computation (1995) 195–201
|