|
[1]P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang and Y. Xie, Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory, presented at the ACM SIGARCH Computer Architecture News, 2016. [2]Q. T. Zhang, H. Q. Wu, P. Yao, W. Q. Zhang, B. Gao, N. Deng and H. Qian, Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems, Neural Netw. 108, 217-223 (2018). [3]F. R. Meng, Y. Xue and C. M. Yang, Power- and Endurance-Aware Neural Network Training in NVM-Based Platforms, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 37, 2709-2719 (2018). [4]J. Woo, K. Moon, J. Song, M. Kwak, J. Park and H. Hwang, Optimized Programming Scheme Enabling Linear Potentiation in Filamentary HfO2 RRAM Synapse for Neuromorphic Systems, IEEE Trans. Electron Devices 63, 5064-5067 (2016). [5]J. C. Liu, T. Y. Wu and T. H. Hou, Optimizing Incremental Step Pulse Programming for RRAM Through Device-Circuit Co-Design, IEEE Trans. Circuits Syst. II-Express Briefs 65, 617-621 (2018). [6]C. Sung, S. Lim, H. Kim, T. Kim, K. Moon, J. Song, J. J. Kim and H. Hwang, Effect of conductance linearity and multi-level cell characteristics of TaOx-based synapse device on pattern recognition accuracy of neuromorphic system, Nanotechnology 29, 5 (2018). [7]C. H. Wang, W. He, Y. Tong and R. Zhao, Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications, Sci Rep 6, 9 (2016). [8]J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park and H. Hwang, Improved Synaptic Behavior Under Identical Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems, IEEE Electron Device Lett. 37, 994-997 (2016). [9]W. Wu, H. Q. Wu, B. Gao, N. Deng, S. M. Yu and H. Qian, Improving Analog Switching in HfOx-Based Resistive Memory With a Thermal Enhanced Layer, IEEE Electron Device Lett. 38, 1019-1022 (2017). [10]D. O. Hebb, The organization of behavior, Annee Psychol. 51, 493-494 (1949). [11]J. W. Jang, S. Park, G. W. Burr, H. Hwang and Y. H. Jeong, Optimization of Conductance Change in Pr1-xCaxMnO3-Based Synaptic Devices for Neuromorphic Systems, IEEE Electron Device Lett. 36, 457-459 (2015). [12]R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity, Annu. Rev. Physiol. 64, 355-405 (2002). [13]D. Purves, R. Cabeza, S. A. Huettel, K. S. LaBar, M. L. Platt, M. G. Woldorff and E. M. Brannon, Cognitive neuroscience. (Sunderland: Sinauer Associates, Inc, 2008). [14]G. Q. Bi and M. M. Poo, Synaptic modification by correlated activity: Hebb's postulate revisited, Annu. Rev. Neurosci. 24, 139-166 (2001). [15]T. V. P. Bliss and G. L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature 361, 31-39 (1993). [16]S. F. Cooke and T. V. P. Bliss, Plasticity in the human central nervous system, Brain 129, 1659-1673 (2006). [17]M. A. Alam, B. E. Weir and P. J. Silverman, A study of soft and hard breakdown - Part II: Principles of area, thickness, and voltage scaling, IEEE Trans. Electron Devices 49, 239-246 (2002). [18]M. A. Alam, B. E. Weir and P. J. Silverman, A study of soft and hard breakdown - Part I: Analysis of statistical percolation conductance, IEEE Trans. Electron Devices 49, 232-238 (2002). [19]J. W. McPherson and H. C. Mogul, Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films, J. Appl. Phys. 84, 1513-1523 (1998). [20]J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol. 3, 429-433 (2008). [21]P. C. Wang, P. G. Li, Y. S. Zhi, D. Y. Guo, A. Q. Pan, J. M. Zhan, H. Liu, J. Q. Shen and W. H. Tang, Bias tuning charge-releasing leading to negative differential resistance in amorphous gallium oxide/Nb: SrTiO3 heterostructure, Appl. Phys. Lett. 107, 4 (2015). [22]K. P. Biju, X. Liu, E. Bourim, I. Kim, S. Jung, M. Siddik, J. Lee and H. Hwang, Asymmetric bipolar resistive switching in solution-processed Pt/TiO2/W devices, J. Phys. D-Appl. Phys. 43, 5 (2010). [23]T. J. Chu, T. M. Tsai, T. C. Chang, K. C. Chang, C. H. Pan, K. H. Chen, J. H. Chen, H. L. Chen, H. C. Huang, C. C. Shih, Y. E. Syu, J. C. Zheng and S. M. Sze, Ultra-high resistive switching mechanism induced by oxygen ion accumulation on nitrogen-doped resistive random access memory, Appl. Phys. Lett. 105, 4 (2014). [24]Z. Fan, H. Fan, L. Yang, P. L. Li, Z. X. Lu, G. Tian, Z. F. Huang, Z. W. Li, J. X. Yao, Q. Y. Luo, C. Chen, D. Y. Chen, Z. B. Yan, M. Zeng, X. B. Lu, X. S. Gao and J. M. Liu, Resistive switching induced by charge trapping/detrapping: a unified mechanism for colossal electroresistance in certain Nb:SrTiO3-based heterojunctions, J. Mater. Chem. C 5, 7317-7327 (2017). [25]E. Mikheev, B. D. Hoskins, D. B. Strukov and S. Stemmer, Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions, Nat. Commun. 5, 8 (2014). [26]W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biol. 52, 99-115 (1990). [27]A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev. 3, 211-& (1959). [28]J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy. (Minnesota, 1995). [29]H. Demiryont, J. R. Sites and K. Geib, Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering, Appl. Optics 24, 490-495 (1985). [30]R. Sohal, C. Walczyk, P. Zaumseil, D. Wolansky, A. Fox, B. Tillack, H. J. Mussig and T. Schroeder, Thermal oxidation of chemical vapour deposited tungsten layers on silicon substrates for embedded non-volatile memory application, Thin Solid Films 517, 4534-4539 (2009). [31]K. Senthil and K. Yong, Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing, Nanotechnology 18, 7 (2007).
|