|
1. G. H. Taylor , “Development of optical properties of coke during carbonization “, Fuel (Lond.) 40 (1961), 465-472. 2. J. D. Brooks and G. H. Taylor, “The formation of graphitizing form the liquid phase carbons”, Carbon Vol. 3 (1965), 185-193. 3. W. A. Burgess, J. J. Pittman, R. K. Marcus, and M. C. Thies, “Structural identification of the Monomeric Constituents of Petroleum Pitch”, Energy Fuels 24 (2010), 4301–4311. 4. Ward A. Burgess, Mark C. Thies, “Molecular structures for the oligomeric constituents of petroleum pitch”, Carbon 49 (2011), 636-651. 5. S. H. Yoon, Y. Korai, I. Mochida, K. Yokogawa, S. Fukuyama and M. Yoshimura, “Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch”, Carbon Vol. 34, No. 1 (1996), 83-88. 6. ASTM 2318 7. ASTM 4072 8. ASTM 3104 9. ASTM 2415 10. ASTM 189 11. 吳明鉑, 邱介山, 鄭經堂, 張玉貞, “石油基碳質材料的製備及其應用”, 中國石化出版社, 2010 12. W. Adames, W. Breuer, A. Michalczyk and W. Borchard, “Differential vapour pressure osmometry-I. Description of the method”, Eur. Polym. J. Vol. 25(1989), No. 9, 947-950. 13. R. A. Greinke and L. H. O''Connor, “Determination of molecular weight distributions of polymerized petroleum pitch by gel permeation chromatography with quinoline euent”, Anal. Chem. 52(1980), 52, 1877-1881. 14. A. A. Herod, Y. Zhuo, R. Kandiyoti, “Size-exclusion chromatography of large molecules from coal liquids, petroleum residues, soots, biomass tars and humic substances”, J. Biochem. Biophys. Methods 56 (2003), 335–361. 15. K. S. Seshadri, E. W. Albaugh and J. D. Bacha, “Characterization of needle coke feedstocks by magnetic resonance spectroscopy”, Fuel 61(1982), 336-340. 16. K. S. Seshadri, J. D. Bacha and E. W. Albaugh, “Structural characterization of fractions of petroleum pitch and ethylene pyrolysis tar by 1H and 13C n.m.r. spectroscopy”, Fuel 61(1982), 1095-1100. 17. E. M. Dickinson, “Average structures of petroleum pitch fractions by 1H/13C n.m.r. spectroscopy”, Fuel 64 (1985), 704-706. 18. S. A. Qian, P. Z. Zhang and B. L. Li, “Structural characterization of pitch feedstocks for coke making”, Fuel 64 (1985), 1085-1091. 19. M. Zander and G. Collin, “A review of the significance of polycyclic aromatic chemistry for pitch science”, Fuel 72 (1993), 1281-1285. 20. G. X. Cheng, B. X. Shen, H. B. Li, J. H. Hao and H. Ling, “Determination of the main sulfur-containing compounds in sulfide asphalt and the mechanism of asphalt sulfidation”, J. of East China University of Science and Technology, Vol.34, No.3 (2008), 319-323. 程國香、沈本賢、李海彬、郝金輝、凌昊, “瀝青硫化改性生成的硫化物類型及其反應機理”,華東理工大學學報,Vol.34,No.3 (2008), 319-323。 21. F. Zhen, “Comparison and application of different process to produce modified pitch”, Coal Chemical Industry 146 (2010), 52-55. 22. W. F. Edwards, M. C. Thies, “Fractionation of pitches by molecular weight using continuous and semibatch dense-gas extraction”, Carbon 44 (2006), 243-252. 23. K. W. Hutchenson, J. R. Roebers, and M. C. Thies, “Fractionation of petroleum pitch by supercritical fluid extraction”, Carbon 29 (1991), 215-223. 24. M. S. Zhuang and M. C. Thies, “Extraction of Petroleum Pitch with Supercritical Toluene: Experiment and Prediction”, Energy & Fuels 14 (2000), 70-75. 25. A. Cristadoro, S. U. Kulkarni, W. A. Burgess, E. G. Cervo, H. J. Räder, K. Müllen, D. A. Bruce, M. C. Thies, “Structural characterization of the oligomeric constituents of petroleum pitches”, Carbon 47 (2009), 2358–2370. 26. E. G. Cervo, S. U. Kulkarni, M. C. Thies, “Isolating polycyclic aromatic hydrocarbon (PAH) oligomers via continuous, two-column supercritical extraction”, J. of Supercritical Fluids 66 (2012), 120– 128. 27. D. F. Esguerra, W. P. Hoffman, M. C. Thies, “Fractionation of an oligomeric pyrene pitch via supercritical extraction”, J. of Supercritical Fluids 79 (2013), 170–176. 28. S. U. Kulkarni, W. P. Hoffman, M. C. Thies, “The molecular structures comprising catalytically polymerized pyrene pitch”, Carbon 59 (2013), 33-39. 29. D. F. Esguerra, W. P. Hoffman, M. C. Thies, “Liquid crystallinity in trimer oligomers isolated from petroleum and pyrene pitches”, Carbon 79 (2014), 265-273. 30. D. F. Esguerra, W. P. Hoffman, M. C. Thies, “Molecular structures of the constituents of pyrene pitches”, Fuel 124 (2014), 133–140 31. L. M. Manocha, M. Patela, S. M. Manocha, C. Vix-Guterl, P. Ehrburger, “Carbon/carbon composites with heat-treated pitches I. Effect of treatment in air on the physical characteristics of coal tar pitches and the carbon matrix derived therefrom”, Carbon 39 (2001), 663-671. 32. Y. H. Xiao, R. J. Feng, S. M. Cao, X. Y. Liu, T. Gao, Z. Q. Pan, “Characterization of coal tar pitch and paving pitch by UV, EA and NMR”, Chemical Industry and Engineering 28 (2011), 11-17. 33. W. Lin, S. C Cao, B. J. Chen, X. b. Wang, Y. Zhang, “Technology of solvents extraction separation system of processing 10 kg coal tar per pot”, The Chinese Journal of Nonferrous Metals 14 (2004), 118-121. 34. M. Z. Özel, K. D. Bartle, “Production of Mesophase Pitch from Coal Tar and Petroleum Pitches using Supercritical Fluid Extraction”, Turkish Journal Of Chemistry 26 (2002), 417-424. 35. Q. Li, Z. Zhang, C. Zhong, Y. Liu, Q. Zhou, “Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents”, Fluid Phase Equilibria 207 (2003), 183-192. 36. H. Pahlavanzadeh, H. Bakhshi, H.A. Shirazizadeh, “Experimental measurement and phase equilibria calculation forternary systems of carbon dioxide+ toluene + naphthalene and carbondioxide+ ethanol + acridine, applicable for fine particle production in GAS process”, Thermochimica Acta 638 (2016), 69-79. 37. J. G. Kima, J. H. Kima, J. S. Ima, Y.-S. Lee, T.-S. Bae, “Empirical study of petroleum-based pitch production via pressure- and temperature-controlled thermal reactions”, Journal of Industrial and Engineering Chemistry 62 (2018), 176–184. 38. C. Blanco, R. Santamar´ıa, J. Bermejo, R. Mene´ndez, “A comparative study of air-blown and thermally treated coal-tar pitches”, Carbon 38 (2000), 517-523 39. K. Kanno, K. E. Yoon, J. J. Fernandez, I. Mochida, F. Fortin, Y. Korai, “Effects of carbon black addition on the carbonization of mesophase pitch”, Carbon 32 (1994), 801-807. 40. T. Q. Li, C. Y. Wang, X. J. Liu, J. M. Zheng, H. Wang, “Characteristics of mesocarbon microbeads generated from a coal tar pitch with addition of micro-alumina powder”, Fuel Processing Technology 87 (2005), 77 – 83 41. T. Guan, P. Zuo, S. Sun, C. Du, L. Zhang, Y. Cui, L. Yang, Y. Gao, G. Yin, F. Wang, “Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests”, Journal of Power Sources 268 (2014), 816-823 42. E. Mora, R. Santamarı´a, C. Blanco, M. Granda, R. Mene´ndez, “Mesophase development in petroleum and coal-tar pitches and their blends”, J. Anal. Appl. Pyrolysis 68-69 (2003), 409-424. 43. R. A. Greinke, “Kinetics of petroleum pitch polymerization by gel permeation chromatography”, Carbon 24 (1986), 677-686. 44. I. Mochida, Y. Q. Fei, K. Sakanishi, Y. Korai, H. Usuba, K. Miura “Carbonization of coal tar pitch denitrogenated by metal sulfates”, Carbon 30 (1992), 241-246 45. M. D. Guille´n, C. D´ıaz, C. G. Blanco, “Characterization of coal tar pitches with different softening points by 1H NMR Role of the different kinds of protons in the thermal process”, Fuel Processing Technology 58 (1998), 1–15 46. Y. G. Wang, Y. C. Chang, S. Ishida, Y. Korai, I. Mochida, “Stabilization and carbonization properties of mesocarbon microbeads (MCMB) prepared from a synthetic naphthalene isotropic pitch”, Carbon 37 (1999), 969-976. 47. L. M. Manocha, M. Patela, S. M. Manocha, C. Vix-Guterl, P. Ehrburger, “Carbon/carbon composites with heat-treated pitches I. Effect of treatment in air on the physical characteristics of coal tar pitches and the carbon matrix derived therefrom”, Carbon 39 (2001), 663-671. 48. J. Machnikowski, H. Kaczmarska, I. Gerus-Piasecka, M.A. D´ıez, R. Alvarez, R. Garc´ıa, “Structural modification of coal-tar pitch fractions during mild oxidation—relevance to carbonization behavior”, Carbon 40 (2002), 1937-1947. 49. K. Mokoena, T. J. Van der Walt, T. J. Morgan, A. A. Hero, R. Kandiyoti, “Heat treatment of medium-temperature Sasol–Lurgi gasifier coal-tar pitch for polymerizing to higher value products”, Fuel 87 (2008), 751-760. 50. P. Álvarez, N. Díez, C. Blanco, R. Santamaría, R. Menéndez, M. Granda, “An insight into the polymerization of anthracene oil to produce pitch using nuclear magnetic resonance”, Fuel 105 (2013), 471-476. 51. R. Moriyama, J. -i. Hayashi, K. Suzuki, T. Hiroshima, T. Chiba, “Analysis and modeling of mesophase sphere generation, growth and coalescence upon heating of a coal tar pitch”, Carbon 40 (2002), 53-64. 52. H. Marsh, M. Mart´ınez-Escandell, F. Rodr´ıguez-Reinoso, “Semicokes from pitch pyrolysis: mechanisms and kinetics”, Carbon 37 (1999), 363-390. 53. R. A. Greinke, “Chemical bond formed in thermally polymerized petroleum pitch”, Carbon 30 (1992), 407-414. 54. A. Corma, P. J. Miguel, A. V. Orchilles, G. S. Koermer, “Cracking of long-chain alkyl aromatics on USY zeolite catalysts”, J. of Catalysis 135 (1992), 45-59. 55. C. M. Smith, P. E. Savage, “Reaction of polycyclic alkylaromatics-VI. Detailed chemical kinetic modeling”, Chemical Engineering Science 49 (1994), 259-270. 56. D. Begin, E. Alain, G. Furdin, J. F. Mareche, “Pyrolysis of coal tar pitch and its mixtures with a graphite-FeCl3 intercalated compound-Influence of heating rate and GIC concentration”, Fuel 74 (1995), 139-146. 57. S. M. Oh, Y. D. Park, “Comparative studies of the modification of coal-tar pitch”, Fuel 78 (1999), 1859-1865. 58. A. B. Halgeri, J. Das, “Novel catalytic aspects of beta zeolite for alkyl aromatics transformation”, Applied Catalysis A: General 181 (1999), 347-354. 59. P. M. Khandare, J. W. Zondlo, P. B. Stansberry, A. H. Stiller, “Rheological investigations of pitch material Part II: viscosity measurement of A240 and ARA-24 pitches using a high-temperature high-pressure rheometer”, Carbon 38 (2000), 889-897. 60. J. M. Serra, E. Guillon, A. Corma, “A rational design of alkyl-aromatics dealkylation–transalkylation catalysts using C8 and C9 alkyl-aromatics as reactants”, J. of Catalysis 227 (2004), 459-469.
|