跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜子邦
研究生(外文):Tz-Bang Du
論文名稱:利用超臨界流體技術進行石油瀝青的分離之研究
論文名稱(外文):Separation of Petroleum Pitch Using Supercritical Fluid Technology
指導教授:陳延平陳延平引用關係
口試委員:陳立仁諶玉真蔡榮進蘇至善
口試日期:2019-06-10
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:113
中文關鍵詞:石油瀝青超臨界萃取分子量超臨界反溶劑熱縮聚合介相瀝青負極材料
DOI:10.6342/NTU201901170
相關次數:
  • 被引用被引用:0
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣每年煉製百萬桶以上的原油,在輕沸物的部分包括汽柴油、C1~C3原料、C4~C6原料、基礎油等,都有相應具有價值的產品應用,但重沸物的製程終端副產物瀝青,每年產量達百萬噸,卻僅有道路柏油、石油焦、發電燃料等低單價的應用。人造碳材是一項高單價的應用材料,亦是高階科技、尖端設備的關鍵材料,介相瀝青是人造碳材的重要來源,如何從國內石油瀝青製得介相瀝青,是一項值得探討的課題。有鑑於此,本研究第一部分取得國內石油瀝青包括:重油裂解塔底油瀝青、輕油裂解塔底油瀝青、真空蒸餾塔底油瀝青、柏油瀝青等,進行分析方法之研究與建立,並以國際石油瀝青A240及煤焦瀝青ST-CTP之分析結果進行比較,篩選合適的國內石油瀝青料源作為介相瀝青研究之原料。建立新穎性雙偵測器膠體層析儀研究設備,並完成石油瀝青分子量、分量分佈及結構特徵之快速分析方法之探討,透過UV-RI串聯式雙偵測器應用於瀝青分析鑑定,顯示所建立之儀器及方法具有良好的穩定性與再現性,分析結果能夠作為介相瀝青篩選之參考。
第二部分探討PP6石油瀝青的純化方法包括:傳統溶劑進行石油瀝青溶解分離、溶劑分子量分割純化、超臨界二氧化碳石油瀝青萃取分離及次臨界二氧化碳反溶劑系統進行石油瀝青之沉澱分離等,並製備百克級批量的石油瀝青純化樣品,包括透過熱迴流溶劑溶解分離及500 ml高壓槽之超臨界二氧化碳萃取分離。在不同的純化方法中,石油瀝青樣品均達到分子量分佈窄化、均勻度提昇的效果。在溶劑溶解分離的探討中,發現不同的溶劑系統,造成PP6石油瀝青溶解程度的差異,進而影響到分離純化後石油瀝青樣品的分子量及分子量分佈,製備最均勻的固相石油瀝青樣品之溶劑系統為乙酸乙酯,其分子量達3571 g/mole、分子量分佈PDI為1.6,但回收率僅8.6%。超臨界二氧化碳萃取分離對於PP6石油瀝青之小分子組分具有較高的選擇性,在4500 psi、80℃超臨界二氧化碳條件下萃取的萃餘物之分子量為1054 g/mole、PDI為3.6、回收率為86.0%。探討具新穎性次臨界二氧化碳反溶劑系統進行石油瀝青之沉澱分離,可以成功將大分子量的石油瀝青組份沉澱出來,在25℃、1700 psi至3700 psi的操作條件下,製得分子量分佈達3.5之石油瀝青樣品;研究發現,石油瀝青沉澱物分子量隨壓力昇高而增加,推測在探討的次臨界二氧化碳反溶劑壓力範圍下,主要的影響因子為二氧化碳的溶解效應,石油瀝青中,中大分子量組份溶解量隨壓力而增加,使固相石油瀝青樣品分子量上昇。透過壓力的調控,能夠控制二氧化碳的溶解效應,進而控制固相石油瀝青樣品之分子量。
本研究第三部分針對國內石油瀝青熱縮聚合之探討,建立100ml及熱縮聚合設備、2000ml級熱縮聚合設備、碳微球索式萃洗設備等;以GPC分析分子量聚合情形、利用TGA量測碳產率、以偏光顯微鏡量測介相化比例,求得較佳的熱縮聚合條件,確認石油瀝青超臨界純化後之產物,進行熱縮聚合具有較高的介相瀝青產率。成功建立國內石油瀝青製備石油瀝青系介相碳微球之程序,與中鋼碳素商品,進行比較及碳材分析結果及產品物性與分析結果之關聯。將碳化及石墨化後的石油瀝青系介相碳微球產品塗佈於銅箔,進行鈕扣電池的組裝及電性測試,結果呈現較高的初次充電量,較高的初次不可逆電量,及較低的二次充電電量,顯示材料上存在許多不規整的缺陷,造成不可逆電量的增加,相關研究結果,將有助後續國內石油瀝青介相瀝青產品之開發與改良。
Over million barrels of crude petroleum are refined in Taiwan every year. The light end products such as gasoline, C1~C3 and C4~C6 raw material, base oil and etc., are valuable in the chemical industry. However, the heavy end by-product petroleum pitch with amount of million ton per year exhibits much fewer values. Most of them are used to be road asphalt or petroleum coke for furnace. Artificial carbon material is one of high added value applications of mesophase pitch. These carbon materials are used in high technology processes and advanced equipment unit parts. It would be worth to study how to produce mesophase pitch from petroleum pitch in Taiwan. In the first part of the research, we acquired petroleum pitch samples of different petroleum refinery process, such as residue fluidized catalytic cracking (RFCC) process, pyrolysis fuel oil (PFO) process, vacuum distillation unit (VDU) process, asphalt product etc. and used for the analysis method research. The standard petroleum pitch sample A240 and coal tar pitch sample ST-CTP are examined and compared with the petroleum pitch samples. A novel dual detector gel permeation chromatography system is set up. A fast analysis method of the molecular weight, polydispersity index and characteristic structure of petroleum pitch is established. The UV-RI dual detector analysis method for petroleum pitch samples exhibit good stability and reliability. The analysis results are able to give a good reference for petroleum pitch starting material selection and mesophase pitch fabrication.
In the second part of the research, the purification processes for PP6 petroleum pitch including: solvent dissolution separation method, solvent fraction method, supercritical carbon dioxide extraction method and subcritical anti-solvent method are investigated. The molecular weight distribution of the purified petroleum pitch is successfully narrowed down in all studied methods. In the solvent dissolution separation process, different solvent type results different dissolution extent of PP6 petroleum pitch, which will directly affect the molecular weight and molecular weight distribution of purified petroleum pitch. The most uniform petroleum pitch sample of solvent dissolution separation process is obtained in ethyl acetate solvent system, which equips molecular weight 3571 g/mole, PDI 1.6, but 8.6% recovery. Comparing with solvent dissolution method, supercritical carbon dioxide (scCO2) extraction method exhibits high selectivity to the small molecular component of PP6 petroleum pitch. At 80℃ and 4500 psi scCO2 extraction condition, a residual of 86.0% high recovery with molecular weight 1054 g/mole and PDI 3.6 is obtained. A large vessel of 500 ml of scCO2 extraction is established. Hundred gram purified petroleum pitch sample for thermal condensation polymerization is able to be produced in single batch scCO2 extraction operation. A novel subcritical anti-solvent (SAS) precipitation separation method for PP6 petroleum pitch is studied in the range of 1700 psi to 3700 psi at 25℃. The molecular weight distribution of precipitated is successfully narrowed down to 3.5 in advance. The molecular weight is found to be increasing with increasing pressure in the SAS process, a higher solvent power of carbon dioxide at higher pressure is proposed to be the dominated effect. As a result, the molecular weight of precipitated petroleum pitch can be manipulated via pressure in the SAS process.
In the third part of the research, the thermal condensation polymerization process of petroleum pitch is investigated. Thermal condensation polymerization equipment size of 100 ml and 2000 ml are established to investigate the experimental factor of petroleum pitch thermal condensation polymerization. Soxhlet extraction apparatus is established to isolate mesophase carbon micro bead (MCMB) from petroleum pitch thermal condensation polymerization product. We found that the petroleum pitch purified with supercritical fluid extraction will lead to a higher mesphase pitch yield. The petroleum pitch MCMB product synthesized in this study is analyzed and compared with commercial MCMB product. The product is going on proceeding carbonization and graphitization process and composed into a Li-ion coin cell. The measurement electrical properties show that there are higher first time charge density, higher first time irreversible capacity and lower secondary charge density. The more defect is proposed and can be observed by Raman spectrum to response to the electrical result. The material of petroleum pitch MCMB is successfully synthesized in this study and the analysis result will helpful to further improvement of this material.
目錄 I
圖目錄 III
表目錄 VIII
中文摘要 IX
ABSTRACT XI
第一章 緒論 1
1-1 介相瀝青概述 3
1-2 影響介相瀝青製備的因素 5
1-3 研究架構說明 7
第二章 石油瀝青分析方法研究 8
2-1 石油瀝青分析方法研究目的 8
2-2 石油瀝青分析方法研究文獻探討 9
2-3 石油瀝青分析方法之研究方法 11
2-4 石油瀝青分析方法研究結果與討論 16
2-4.1 國內瀝青樣品分子量分析 16
2-4.2 石油瀝青分子結構分析 19
2-4.3 台塑石油瀝青分子量及結構分析 23
2-4.4 新穎性石油瀝青GPC雙偵測器分析方法建立 28
2-5 石油瀝青分析方法研究結論 35
第三章 石油瀝青純化方法研究 37
3-1 石油瀝青純化方法研究目的 37
3-2 石油瀝青純化方法研究文獻探討 38
3-3 石油瀝青純化方法之研究方法 45
3-4 石油瀝青純化方法研究結果與討論 50
3-4.1 石油瀝青溶劑分離純化探討 50
3-4.2 利用超臨界二氧化碳進行石油瀝青純化 59
3-4.3 利用次臨界二氧化碳反溶劑系統進行石油瀝青分離純化 73
3-5 石油瀝青純化方法研究結論與建議 75
第四章 石油瀝青熱縮聚合特性研究 77
4-1 石油瀝青熱縮聚合特性研究目的 77
4-2 石油瀝青熱縮聚合特性研究文獻探討 78
4-3 石油瀝青熱縮聚合特性研究方法 83
4-4 石油瀝青熱縮聚合特性研究結果與討論 86
4-4.1 石油瀝青熱縮聚合探討 86
4-4.2 石油瀝青熱縮聚合放大及介相瀝青產品分析 93
4-5 石油瀝青熱縮聚合特性研究結論與建議 104
第五章 研究結論與建議 106
參考文獻 108
1. G. H. Taylor , “Development of optical properties of coke during carbonization “, Fuel (Lond.) 40 (1961), 465-472.
2. J. D. Brooks and G. H. Taylor, “The formation of graphitizing form the liquid phase carbons”, Carbon Vol. 3 (1965), 185-193.
3. W. A. Burgess, J. J. Pittman, R. K. Marcus, and M. C. Thies, “Structural identification of the Monomeric Constituents of Petroleum Pitch”, Energy Fuels 24 (2010), 4301–4311.
4. Ward A. Burgess, Mark C. Thies, “Molecular structures for the oligomeric constituents of petroleum pitch”, Carbon 49 (2011), 636-651.
5. S. H. Yoon, Y. Korai, I. Mochida, K. Yokogawa, S. Fukuyama and M. Yoshimura, “Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch”, Carbon Vol. 34, No. 1 (1996), 83-88.
6. ASTM 2318
7. ASTM 4072
8. ASTM 3104
9. ASTM 2415
10. ASTM 189
11. 吳明鉑, 邱介山, 鄭經堂, 張玉貞, “石油基碳質材料的製備及其應用”, 中國石化出版社, 2010
12. W. Adames, W. Breuer, A. Michalczyk and W. Borchard, “Differential vapour pressure osmometry-I. Description of the method”, Eur. Polym. J. Vol. 25(1989), No. 9, 947-950.
13. R. A. Greinke and L. H. O''Connor, “Determination of molecular weight distributions of polymerized petroleum pitch by gel permeation chromatography with quinoline euent”, Anal. Chem. 52(1980), 52, 1877-1881.
14. A. A. Herod, Y. Zhuo, R. Kandiyoti, “Size-exclusion chromatography of large molecules from coal liquids, petroleum residues, soots, biomass tars and humic substances”, J. Biochem. Biophys. Methods 56 (2003), 335–361.
15. K. S. Seshadri, E. W. Albaugh and J. D. Bacha, “Characterization of needle coke feedstocks by magnetic resonance spectroscopy”, Fuel 61(1982), 336-340.
16. K. S. Seshadri, J. D. Bacha and E. W. Albaugh, “Structural characterization of fractions of petroleum pitch and ethylene pyrolysis tar by 1H and 13C n.m.r. spectroscopy”, Fuel 61(1982), 1095-1100.
17. E. M. Dickinson, “Average structures of petroleum pitch fractions by 1H/13C n.m.r. spectroscopy”, Fuel 64 (1985), 704-706.
18. S. A. Qian, P. Z. Zhang and B. L. Li, “Structural characterization of pitch feedstocks for coke making”, Fuel 64 (1985), 1085-1091.
19. M. Zander and G. Collin, “A review of the significance of polycyclic aromatic chemistry for pitch science”, Fuel 72 (1993), 1281-1285.
20. G. X. Cheng, B. X. Shen, H. B. Li, J. H. Hao and H. Ling, “Determination of the main sulfur-containing compounds in sulfide asphalt and the mechanism of asphalt sulfidation”, J. of East China University of Science and Technology, Vol.34, No.3 (2008), 319-323. 程國香、沈本賢、李海彬、郝金輝、凌昊, “瀝青硫化改性生成的硫化物類型及其反應機理”,華東理工大學學報,Vol.34,No.3 (2008), 319-323。
21. F. Zhen, “Comparison and application of different process to produce modified pitch”, Coal Chemical Industry 146 (2010), 52-55.
22. W. F. Edwards, M. C. Thies, “Fractionation of pitches by molecular weight using continuous and semibatch dense-gas extraction”, Carbon 44 (2006), 243-252.
23. K. W. Hutchenson, J. R. Roebers, and M. C. Thies, “Fractionation of petroleum pitch by supercritical fluid extraction”, Carbon 29 (1991), 215-223.
24. M. S. Zhuang and M. C. Thies, “Extraction of Petroleum Pitch with Supercritical Toluene: Experiment and Prediction”, Energy & Fuels 14 (2000), 70-75.
25. A. Cristadoro, S. U. Kulkarni, W. A. Burgess, E. G. Cervo, H. J. Räder, K. Müllen, D. A. Bruce, M. C. Thies, “Structural characterization of the oligomeric constituents of petroleum pitches”, Carbon 47 (2009), 2358–2370.
26. E. G. Cervo, S. U. Kulkarni, M. C. Thies, “Isolating polycyclic aromatic hydrocarbon (PAH) oligomers via continuous, two-column supercritical extraction”, J. of Supercritical Fluids 66 (2012), 120– 128.
27. D. F. Esguerra, W. P. Hoffman, M. C. Thies, “Fractionation of an oligomeric pyrene pitch via supercritical extraction”, J. of Supercritical Fluids 79 (2013), 170–176.
28. S. U. Kulkarni, W. P. Hoffman, M. C. Thies, “The molecular structures comprising catalytically polymerized pyrene pitch”, Carbon 59 (2013), 33-39.
29. D. F. Esguerra, W. P. Hoffman, M. C. Thies, “Liquid crystallinity in trimer oligomers isolated from petroleum and pyrene pitches”, Carbon 79 (2014), 265-273.
30. D. F. Esguerra, W. P. Hoffman, M. C. Thies, “Molecular structures of the constituents of pyrene pitches”, Fuel 124 (2014), 133–140
31. L. M. Manocha, M. Patela, S. M. Manocha, C. Vix-Guterl, P. Ehrburger, “Carbon/carbon composites with heat-treated pitches I. Effect of treatment in air on the physical characteristics of coal tar pitches and the carbon matrix derived therefrom”, Carbon 39 (2001), 663-671.
32. Y. H. Xiao, R. J. Feng, S. M. Cao, X. Y. Liu, T. Gao, Z. Q. Pan, “Characterization of coal tar pitch and paving pitch by UV, EA and NMR”, Chemical Industry and Engineering 28 (2011), 11-17.
33. W. Lin, S. C Cao, B. J. Chen, X. b. Wang, Y. Zhang, “Technology of solvents extraction separation system of processing 10 kg coal tar per pot”, The Chinese Journal of Nonferrous Metals 14 (2004), 118-121.
34. M. Z. Özel, K. D. Bartle, “Production of Mesophase Pitch from Coal Tar and Petroleum Pitches using Supercritical Fluid Extraction”, Turkish Journal Of Chemistry 26 (2002), 417-424.
35. Q. Li, Z. Zhang, C. Zhong, Y. Liu, Q. Zhou, “Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents”, Fluid Phase Equilibria 207 (2003), 183-192.
36. H. Pahlavanzadeh, H. Bakhshi, H.A. Shirazizadeh, “Experimental measurement and phase equilibria calculation forternary systems of carbon dioxide+ toluene + naphthalene and carbondioxide+ ethanol + acridine, applicable for fine particle production in GAS process”, Thermochimica Acta 638 (2016), 69-79.
37. J. G. Kima, J. H. Kima, J. S. Ima, Y.-S. Lee, T.-S. Bae, “Empirical study of petroleum-based pitch production via pressure- and temperature-controlled thermal reactions”, Journal of Industrial and Engineering Chemistry 62 (2018), 176–184.
38. C. Blanco, R. Santamar´ıa, J. Bermejo, R. Mene´ndez, “A comparative study of air-blown and thermally treated coal-tar pitches”, Carbon 38 (2000), 517-523
39. K. Kanno, K. E. Yoon, J. J. Fernandez, I. Mochida, F. Fortin, Y. Korai, “Effects of carbon black addition on the carbonization of mesophase pitch”, Carbon 32 (1994), 801-807.
40. T. Q. Li, C. Y. Wang, X. J. Liu, J. M. Zheng, H. Wang, “Characteristics of mesocarbon microbeads generated from a coal tar pitch with addition of micro-alumina powder”, Fuel Processing Technology 87 (2005), 77 – 83
41. T. Guan, P. Zuo, S. Sun, C. Du, L. Zhang, Y. Cui, L. Yang, Y. Gao, G. Yin, F. Wang, “Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests”, Journal of Power Sources 268 (2014), 816-823
42. E. Mora, R. Santamarı´a, C. Blanco, M. Granda, R. Mene´ndez, “Mesophase development in petroleum and coal-tar pitches and their blends”, J. Anal. Appl. Pyrolysis 68-69 (2003), 409-424.
43. R. A. Greinke, “Kinetics of petroleum pitch polymerization by gel permeation chromatography”, Carbon 24 (1986), 677-686.
44. I. Mochida, Y. Q. Fei, K. Sakanishi, Y. Korai, H. Usuba, K. Miura “Carbonization of coal tar pitch denitrogenated by metal sulfates”, Carbon 30 (1992), 241-246
45. M. D. Guille´n, C. D´ıaz, C. G. Blanco, “Characterization of coal tar pitches with different softening points by 1H NMR Role of the different kinds of protons in the thermal process”, Fuel Processing Technology 58 (1998), 1–15
46. Y. G. Wang, Y. C. Chang, S. Ishida, Y. Korai, I. Mochida, “Stabilization and carbonization properties of mesocarbon microbeads (MCMB) prepared from a synthetic naphthalene isotropic pitch”, Carbon 37 (1999), 969-976.
47. L. M. Manocha, M. Patela, S. M. Manocha, C. Vix-Guterl, P. Ehrburger, “Carbon/carbon composites with heat-treated pitches I. Effect of treatment in air on the physical characteristics of coal tar pitches and the carbon matrix derived therefrom”, Carbon 39 (2001), 663-671.
48. J. Machnikowski, H. Kaczmarska, I. Gerus-Piasecka, M.A. D´ıez, R. Alvarez, R. Garc´ıa, “Structural modification of coal-tar pitch fractions during mild oxidation—relevance to carbonization behavior”, Carbon 40 (2002), 1937-1947.
49. K. Mokoena, T. J. Van der Walt, T. J. Morgan, A. A. Hero, R. Kandiyoti, “Heat treatment of medium-temperature Sasol–Lurgi gasifier coal-tar pitch for polymerizing to higher value products”, Fuel 87 (2008), 751-760.
50. P. Álvarez, N. Díez, C. Blanco, R. Santamaría, R. Menéndez, M. Granda, “An insight into the polymerization of anthracene oil to produce pitch using nuclear magnetic resonance”, Fuel 105 (2013), 471-476.
51. R. Moriyama, J. -i. Hayashi, K. Suzuki, T. Hiroshima, T. Chiba, “Analysis and modeling of mesophase sphere generation, growth and coalescence upon heating of a coal tar pitch”, Carbon 40 (2002), 53-64.
52. H. Marsh, M. Mart´ınez-Escandell, F. Rodr´ıguez-Reinoso, “Semicokes from pitch pyrolysis: mechanisms and kinetics”, Carbon 37 (1999), 363-390.
53. R. A. Greinke, “Chemical bond formed in thermally polymerized petroleum pitch”, Carbon 30 (1992), 407-414.
54. A. Corma, P. J. Miguel, A. V. Orchilles, G. S. Koermer, “Cracking of long-chain alkyl aromatics on USY zeolite catalysts”, J. of Catalysis 135 (1992), 45-59.
55. C. M. Smith, P. E. Savage, “Reaction of polycyclic alkylaromatics-VI. Detailed chemical kinetic modeling”, Chemical Engineering Science 49 (1994), 259-270.
56. D. Begin, E. Alain, G. Furdin, J. F. Mareche, “Pyrolysis of coal tar pitch and its mixtures with a graphite-FeCl3 intercalated compound-Influence of heating rate and GIC concentration”, Fuel 74 (1995), 139-146.
57. S. M. Oh, Y. D. Park, “Comparative studies of the modification of coal-tar pitch”, Fuel 78 (1999), 1859-1865.
58. A. B. Halgeri, J. Das, “Novel catalytic aspects of beta zeolite for alkyl aromatics transformation”, Applied Catalysis A: General 181 (1999), 347-354.
59. P. M. Khandare, J. W. Zondlo, P. B. Stansberry, A. H. Stiller, “Rheological investigations of pitch material Part II: viscosity measurement of A240 and ARA-24 pitches using a high-temperature high-pressure rheometer”, Carbon 38 (2000), 889-897.
60. J. M. Serra, E. Guillon, A. Corma, “A rational design of alkyl-aromatics dealkylation–transalkylation catalysts using C8 and C9 alkyl-aromatics as reactants”, J. of Catalysis 227 (2004), 459-469.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top