|
[1]B. Kusnoto, and C. A. Evans, “Reliability of a 3D surface laser scanner for orthodontic applications,” Am J Orthod Dentofacial Orthop, vol. 122, no. 4, pp. 342-8, Oct, 2002. [2]B. S. Rubel, “Impression materials: a comparative review of impression materials most commonly used in restorative dentistry,” Dent Clin North Am, vol. 51, no. 3, pp. 629-42, vi, Jul, 2007. [3]T. A. Hamalian, E. Nasr, and J. J. Chidiac, “Impression materials in fixed prosthodontics: influence of choice on clinical procedure,” J Prosthodont, vol. 20, no. 2, pp. 153-60, Feb, 2011. [4]D. J. Conny, L. A. Tedesco, J. D. Brewer, and J. E. Albino, “Changes of attitude in fixed prosthodontic patients,” J Prosthet Dent, vol. 53, no. 4, pp. 451-4, Apr, 1985. [5]T. Hacker, G. Heydecke, and D. R. Reissmann, “Impact of procedures during prosthodontic treatment on patients' perceived burdens,” J Dent, vol. 43, no. 1, pp. 51-7, Jan, 2015. [6]L. Joffe, “OrthoCAD: digital models for a digital era,” J Orthod, vol. 31, no. 4, pp. 344-7, Dec, 2004. [7]M. F. Leifert, M. M. Leifert, S. S. Efstratiadis, and T. J. Cangialosi, “Comparison of space analysis evaluations with digital models and plaster dental casts,” Am J Orthod Dentofacial Orthop, vol. 136, no. 1, pp. 16 e1-4; discussion 16, Jul, 2009. [8]N. Patel, “Integrating three-dimensional digital technologies for comprehensive implant dentistry,” J Am Dent Assoc, vol. 141 Suppl 2, pp. 20S-4S, Jun, 2010. [9]N. Al Mortadi, D. Eggbeer, J. Lewis, and R. J. Williams, “CAD/CAM/AM applications in the manufacture of dental appliances,” Am J Orthod Dentofacial Orthop, vol. 142, no. 5, pp. 727-33, Nov, 2012. [10]N. D. Kravitz, C. Groth, P. E. Jones, J. W. Graham, and W. R. Redmond, “Intraoral digital scanners,” J Clin Orthod, vol. 48, no. 6, pp. 337-47, Jun, 2014. [11]M. G. Wiranto, W. P. Engelbrecht, H. E. Tutein Nolthenius, W. J. van der Meer, and Y. Ren, “Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions,” Am J Orthod Dentofacial Orthop, vol. 143, no. 1, pp. 140-7, Jan, 2013. [12]S. B. Patzelt, A. Emmanouilidi, S. Stampf, J. R. Strub, and W. Att, “Accuracy of full-arch scans using intraoral scanners,” Clin Oral Investig, vol. 18, no. 6, pp. 1687-94, Jul, 2014. [13]R. G. Luthardt, R. Loos, and S. Quaas, “Accuracy of intraoral data acquisition in comparison to the conventional impression,” Int J Comput Dent, vol. 8, no. 4, pp. 283-94, Oct, 2005. [14]A. Syrek, G. Reich, D. Ranftl, C. Klein, B. Cerny, and J. Brodesser, “Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling,” J Dent, vol. 38, no. 7, pp. 553-9, Jul, 2010. [15]S. J. Lee, and G. O. Gallucci, “Digital vs. conventional implant impressions: efficiency outcomes,” Clin Oral Implants Res, vol. 24, no. 1, pp. 111-5, Jan, 2013. [16]P. Seelbach, C. Brueckel, and B. Wostmann, “Accuracy of digital and conventional impression techniques and workflow,” Clin Oral Investig, vol. 17, no. 7, pp. 1759-64, Sep, 2013. [17]B. Gimenez, M. Ozcan, F. Martinez-Rus, and G. Pradies, “Accuracy of a digital impression system based on parallel confocal laser technology for implants with consideration of operator experience and implant angulation and depth,” Int J Oral Maxillofac Implants, vol. 29, no. 4, pp. 853-62, Jul-Aug, 2014. [18]B. Gimenez, M. Ozcan, F. Martinez-Rus, and G. Pradies, “Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth,” Clin Implant Dent Relat Res, vol. 17 Suppl 1, pp. e54-64, Jan, 2015. [19]P. Papaspyridakos, G. O. Gallucci, C. J. Chen, S. Hanssen, I. Naert, and B. Vandenberghe, “Digital versus conventional implant impressions for edentulous patients: accuracy outcomes,” Clin Oral Implants Res, vol. 27, no. 4, pp. 465-72, Apr, 2016. [20]A. Ender, and A. Mehl, “Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision,” J Prosthet Dent, vol. 109, no. 2, pp. 121-8, Feb, 2013. [21]S. B. Patzelt, S. Vonau, S. Stampf, and W. Att, “Assessing the feasibility and accuracy of digitizing edentulous jaws,” J Am Dent Assoc, vol. 144, no. 8, pp. 914-20, Aug, 2013. [22]A. Ender, and A. Mehl, “In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions,” Quintessence Int, vol. 46, no. 1, pp. 9-17, Jan, 2015. [23]F. Kuhr, A. Schmidt, P. Rehmann, and B. Wostmann, “A new method for assessing the accuracy of full arch impressions in patients,” J Dent, vol. 55, pp. 68-74, Dec, 2016. [24]J. W. Anh, J. M. Park, Y. S. Chun, M. Kim, and M. Kim, “A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction,” Korean J Orthod, vol. 46, no. 1, pp. 3-12, Jan, 2016. [25]F. Mangano, A. Gandolfi, G. Luongo, and S. Logozzo, “Intraoral scanners in dentistry: a review of the current literature,” BMC Oral Health, vol. 17, no. 1, pp. 149, Dec 12, 2017. [26]F. Duret, J. L. Blouin, and B. Duret, “CAD-CAM in dentistry,” J Am Dent Assoc, vol. 117, no. 6, pp. 715-20, Nov, 1988. [27]W. H. Mormann, M. Brandestini, and F. Lutz, “[The Cerec system: computer-assisted preparation of direct ceramic inlays in 1 setting],” Quintessenz, vol. 38, no. 3, pp. 457-70, Mar, 1987. [28]W. H. Mormann, M. Brandestini, F. Lutz, and F. Barbakow, “Chairside computer-aided direct ceramic inlays,” Quintessence Int, vol. 20, no. 5, pp. 329-39, May, 1989. [29]J. Katsoulis, R. Mericske-Stern, L. Rotkina, C. Zbaren, N. Enkling, and M. B. Blatz, “Precision of fit of implant-supported screw-retained 10-unit computer-aided-designed and computer-aided-manufactured frameworks made from zirconium dioxide and titanium: an in vitro study,” Clin Oral Implants Res, vol. 25, no. 2, pp. 165-74, Feb, 2014. [30]A. S. Persson, A. Oden, M. Andersson, and G. Sandborgh-Englund, “Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness,” Dent Mater, vol. 25, no. 7, pp. 929-36, Jul, 2009. [31]W. Renne, M. Ludlow, J. Fryml, Z. Schurch, A. Mennito, R. Kessler, and A. Lauer, “Evaluation of the accuracy of 7 digital scanners: An in vitro analysis based on 3-dimensional comparisons,” J Prosthet Dent, vol. 118, no. 1, pp. 36-42, Jul, 2017. [32]F. Duret, “[Toward a new symbolism in the fabrication of prosthetic design],” Cah Prothese, vol. 13, no. 50, pp. 65-71, Jun, 1985. [33]B. K. E. Taneva, and C. A. Evans, “3 D scanning, imaging, and printing in orthodontics,” Contemporary Orthodontics, pp. 147-188, 2015. [34]E. M. Z. Silvia Logozzo, Giordano Franceschini, Ari Kilpelä, Anssi Mäkynen, “Recent advances in dental optics -Part I: 3 D intrazonal scanners for restorative dentistry,” Optics and Lasers in Engineering vol. 54, pp. 203-221, 2014. [35]A. F. G. Pradíes, M. Özcan, B. Giménez, and F. Martínez-Rus, “Using stereophotogrammetric technology for obtaining intraoral digital impressions of implants,” Journal of the American Dental Association (1939), vol. 145, no. 4, pp. 338-344, 2014. [36]J. Burgner, A. L. Simpson, J. M. Fitzpatrick, R. A. Lathrop, S. D. Herrell, M. I. Miga, and R. J. Webster, 3rd, “A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery,” Int J Med Robot, vol. 9, no. 2, pp. 190-203, Jun, 2013. [37]B. K. Emilia Taneva, Carla A. Evans, “3D scanning, imaging, and printing in orthodontics,” Contemporary Orthodontics, vol. Chapter 9, pp. 147-188, 2015. [38]R. Richert, A. Goujat, L. Venet, G. Viguie, S. Viennot, P. Robinson, J. C. Farges, M. Fages, and M. Ducret, “Intraoral Scanner Technologies: A Review to Make a Successful Impression,” J Healthc Eng, vol. 2017, pp. 8427595, 2017. [39]P. H.-S. a. S. Chintal, “Development of high speed and high accuracy 3D dental intra oral scanner,” Procedia Engineering, vol. 100, pp. 1174-1181, 2015. [40]A. B. O. Aubreton, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Machine Vision and Applications, vol. 24, no. 7, pp. 1513-1524, 2013. [41]J. B. da Costa, F. Pelogia, B. Hagedorn, and J. L. Ferracane, “Evaluation of different methods of optical impression making on the marginal gap of onlays created with CEREC 3D,” Oper Dent, vol. 35, no. 3, pp. 324-9, May-Jun, 2010. [42]S. B. Patzelt, C. Lamprinos, S. Stampf, and W. Att, “The time efficiency of intraoral scanners: an in vitro comparative study,” J Am Dent Assoc, vol. 145, no. 6, pp. 542-51, Jun, 2014. [43]G. D. H. a. S. B. M. Patzelt, “Evaluation of the accuracy of six intraoral scanning,” Journal of the American Dental Association (1939), vol. 10, no. 4, pp. 1-5, 2015. [44]T. Joda, and U. Bragger, “Patient-centered outcomes comparing digital and conventional implant impression procedures: a randomized crossover trial,” Clin Oral Implants Res, vol. 27, no. 12, pp. e185-e189, Dec, 2016. [45]M. Zimmermann, A. Mehl, W. H. Mormann, and S. Reich, “Intraoral scanning systems - a current overview,” Int J Comput Dent, vol. 18, no. 2, pp. 101-29, 2015.
[46]P. Muller, A. Ender, T. Joda, and J. Katsoulis, “Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner,” Quintessence Int, vol. 47, no. 4, pp. 343-9, Apr, 2016. [47]A. K. S. Logozzo, A. Mäkynen, E. M. Zanetti, and G. Franceschini, “Recent advances in dental optics - part II: experimental tests for a new intraoral scanner,” Optics and Lasers in Engineering, vol. 54, pp. 187-196, 2014. [48]W. J. van der Meer, F. S. Andriessen, D. Wismeijer, and Y. Ren, “Application of intra-oral dental scanners in the digital workflow of implantology,” PLoS One, vol. 7, no. 8, pp. e43312, 2012. [49]Z. Mao, K. Park, K. Lee, and X. Li, “Robust surface reconstruction of teeth from raw pointsets,” Int J Numer Method Biomed Eng, vol. 30, no. 3, pp. 382-96, Mar, 2014. [50]T. Yuan, W. Liao, N. Dai, X. Cheng, and Q. Yu, “Single-Tooth Modeling for 3D Dental Model,” Int J Biomed Imaging, vol. 2010, 2010. [51]C. H. Tzou, N. M. Artner, I. Pona, A. Hold, E. Placheta, W. G. Kropatsch, and M. Frey, “Comparison of three-dimensional surface-imaging systems,” J Plast Reconstr Aesthet Surg, vol. 67, no. 4, pp. 489-97, Apr, 2014. [52]vcbeat, “口內掃描儀產業梳理:輔助醫生臨床診療方案制定,外企占絕對主流,” https://kknews.cc/zh-tw/health/vzegora.html, 2017. [53]A. Puntillo, “Optical scanners: Eliminating impressions from your practice, lecture ” AAO annual sessio, New Orleans, 2014. [54]T. A. Karl Hollenbeck, Mike van der Poel, “Dental Lab 3D Scanners– How they work and what works best,” 3Shape Technology Research, Copenhagen, pp. 1-5, 2012. [55]G. S. Christoph Vogtlin, Kurt Jager, Bert Müller, “Comparing the accuracy of master models based on digital intra-oral scanners with conventional plaster casts,” Physics in Medicine, vol. 1, pp. 20-26, 2016. [56] Gibson I., Rosen D.W., Stucker B., AdditiveManufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, New York, NY, 2009. [57] “Standard terminology for additive manufacturing technologies,” ASTM F2792-12a, 2012. [58] Sachs E., Cima M., Williams P., Brancazio D., Cornie J., Three dimensional printing. Rapid tooling and prototypes directly from a CAD model, J Eng Indus 1992, 114 (4): 481-488. [59] Gbureck U., olzel T. H., Klammert U., urzler K.W., uller F. A. M, Barralet J. E., Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing, Advanced Functional Materials 2007; 17(18): 3940-3945. [60] Bergmann C., Lindne M.r, Zhang W., 3D printing of bone substitute implants using calcium phosphate and bioactive glasses, J Eur Ceramic Soc 2010; 30(12): 2563-2567. [61] Bourell D. L., Marcus H. L., Barlow J. W., Beaman J. J., Selective laser sintering of metals and ceramics, Int J Powder Metallurgy 1992; 28(4): 369-381. [62] Gahler A., Heinrich J. G., unster J. G, Direct laser sintering of Al2O3-SiO2 dental ceramic components by layer-wise slurry deposition, J Amer Ceramic Society 2006; 89(10): 3076-3080. [63] Waetjen A. M., Polsakiewicz D. A., Kuhl I., Telle R., Fischer H., Slurry deposition by airbrush for selective laser sintering of ceramic components, J Eur Ceramic Society 2009; 29(1): 1-6. [64] Lindner M., Hoeges S., Meiners W., Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique, J Bio Mater Res A 2011; 97(4): 466-471. [65] Doreau F., Chaput C., Chartier T., Stereolithography for manufacturing ceramic parts,” Adv EngMater 2000; 2(8): 493-496. [66] Chartier T., Chaput C., Doreau F., Loiseau M., Stereolithography of structural complex ceramic parts, J Mater Science 2002; 37(15): 3141-3147. [67] Leyland N. S., Evans J. R. G., Harrison D. J., Lithographic printing of ceramics, J Euro Ceramic Society 2002; 22(1): 1-13. [68] Cicha K., Li Z., Stadlmann K., Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy, J App Phys 2011; 110(6): 1-5. Article ID 064911. [69] Grida I., Evans J. R. G., Extrusion freeforming of ceramics through fine nozzles, J Euro Ceramic Society 2003; 23(5): 629-635. [70] Bellini A., Shor L., Guceri S. I., New developments in fused deposition modeling of ceramics, Rap Prototyping J2005; 11(4): 214-220. [71] Lewis J. A., Smay J. E., Stuecker J., Cesarano J., Direct ink writing of three-dimensional ceramic structures, J Amer Ceramic Society 2006; 89(12): 3599–3609. [72] Sun K., Wei T. S., Ahn B. Y., Seo J. Y., Dillon S. J., Lewis J. A., 3D printing of interdigitated Li-ion microbattery architectures, Adv Mater 2013; 25(33) 4539–4543. [73] Sukeshini A. M., Gardner P., Meisenkothen F., Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers, ECS Transactions 2011; 35(1): 2151–2160. [74] Campbell I., Bourell D.,Gibson I.,Additive manufacturing: rapid prototyping comesofage. Rap Protot J. 2012;18(4):255-258. [75] 莊傳勝, 林得耀, 戴維倫, 林敬智, 曾文鵬, 義齒先進數位化製造技術,. 短脈衝雷射加工機制與應用技術專輯2012; 347期 :95-96.
|