跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁雯
研究生(外文):HUANG, YU-WEN
論文名稱:口內掃描機之掃描程序於齒科補綴物數位印模精度分析與應用
論文名稱(外文):Analysis and Application of Intraoral Scanner Procedure for Digital Prosthetics Impression Precision
指導教授:王文騰
指導教授(外文):WANG, WEN-TENG
口試委員:佘振華李佳言
口試委員(外文):SHE, CHEN-HUALEE, CHIA-YEN
口試日期:2018-07-26
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:60
中文關鍵詞:數位口內掃描機桌上3D掃描機3 Shape TRIOSCAD/CAM
外文關鍵詞:Digital Intraoral ScannerDesktop 3D Scanner3 Shape TRIOSCAD/CAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:709
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
隨著醫學科技的進步,牙科產業也一同邁入數位化時代,醫院、診所及牙體技術所三者已開始推行電腦數位化的整合系統,將以往傳統人工假牙取模複雜且耗時的過程,藉由電腦數位化予以取代,藉以改善傳統印模所造成的不適,因此,數位化所使用的工具「口內掃描機」便是一種在牙科領域逐漸普及的醫療器材。
本研究便針對口掃機精度驗證及改善,針對廠內所擁有的3 Shape TRIOS-3口掃機,進行各項外部環境條件操作,以進行掃描精度的確認,並將結果提供牙技所參考使用。
本研究採用3Shape TRIOS口內掃描機,由三位實驗操作者針對研究模型,執行掃描動作3次,測量分析誤差值以利計算準確性。其中實驗條件:1.操作者經驗:A具有4年牙技臨床經驗;B、C則為一般人且無經驗,但經2-3週的儀器操作訓練。此3位操作者分別同樣使用口內掃描機和桌上型掃描機,在同樣外部環境條件(4種條件:日光燈、日光燈+聚光燈、無燈及口水覆蓋)下掃描研究模型,並將掃描得到之數位模型輸出成STL檔利用逆向工程軟體 (Geomagic Qualify)進行分析誤差值,並找尋最佳參數後,將數位檔案傳至3D列印機器列印出工作模型,以驗證檔案準確性。
本實驗結果中全口上顎與下顎牙齒模型在不同掃描程序(控制組與實驗組)兩者比較所得的誤差值,發現三位操作者所掃描的誤差值結果均呈現B誤差> C誤差> A誤差現象。另外,外部環境的干擾以口水及聚光燈影響較大,誤差值幾乎超過0.6mm以上甚或是1mm以上。此外,全口掃描的誤差值更大於半口掃描實驗,因此,在掃描移動速度、掃描機探頭感測器離物體表面的距離及操作者與掃描機器穩定性是造成誤差值偏高的因素。在人為操作因素中,會因分析軟體輸入的圖片解析度高低及影像補掃時間與擷取圖片張數多寡(過大的影像殘缺破損處)均可能造成誤差值偏高或偏低。
綜合以上結論,我們發現在未受專業訓練進行口掃機操作,易造成誤差值偏高,此外,口水覆蓋及過度聚光燈聚焦於牙齒表面,加上掃描移動速度及掃描機探頭感測器離牙齒表面兩者間的距離,同樣會造成誤差值偏高。因此本實驗結果可提供未來研究學者或儀器操作者於進行全口上顎掃描時,可採用實驗組的掃描程序,而全口下顎則可採用控制組,另外半口試驗則是以實驗組的掃描程序為可獲得最佳影像結果。
With the advancement of medical science and technology, the dental industry has also entered the digital age. Hospitals, clinics, and dental technicians have begun to implement a computerized digital integration system, the process of complex and time-consuming traditional artificial dentures was replaced by computerized digitization, in order to improve the discomfort caused by traditional impression Therefore, the tool used for digitizing the "intraoral scanner" is a type of medical device that has gradually become popular in the dental field.
This study aims at the accuracy verification and improvement of intraoral scanners. Focusing on 3 Shape TRIOS-3 intraoral scanners within the factory, a variety of operations was exercised with several external environmental conditions to verify the scanning accuracy. The findings provided as reference for the Institute of Dental Technology.
3Shape TRIOS intraoral scanner was used and operated by three users in the experiment for three times of the scanning process on the studying model, so as to measure and analyze the error for calculation of accuracy. Among them, the experimental conditions are as follows: 1. Operators’ experience: A has 4 years of experiences in clinical field of dental technology; B and C are common people without experiences; however, they had gone through 2-3 weeks of operational training of instrument. They used intraoral scanner and desktop scanner to scan the study models under the same external environmental conditions respectively (4 kinds of conditions: daylight, daylight + spot light, free of light and covered by saliva), followed by exporting digital models to STL files for analysis of error value with Geomagic Qualify, further identifying the optimized parameter, sending digital files to 3D printers for working models to validate the accuracy of the file.
Indicated from the experimental results, we compared the error values of full-mouth and lower jaw models via different scanning procedures (control group and experimental group) and found out that the error values scanned by three operators all showed B error > C error > A Error. In addition, such intervention out of external environments as saliva and spot light had larger effect, wherein the error values almost went beyond 0.6mm above, even 1mm above. Also, the error value of full-month scanning process was even larger than semi-scanning one; hence, the speed of scanning movement, the distance between the probe of scanner and the surface of object, as well as the steadiness of the scanners were factors causing higher level of error. For the factors of artificial operation, resolution of image inputs in the analysis software, the duration of image by supplementary scanning and the number of captured image (over-large area of image defective damage) would lead to higher or lower level of error value.
We have identified that the operation of intraoral scanner without professional training would cause higher level of error value; also, coverage of saliva, excessive light spotting on the surface of tooth, plus the velocity of movement during scanning process and the distance between the probe of scanner and the surface of tooth would also cause higher level of error value. Therefore, we may be able to provide the scanning procedure in the experiment group with the upcoming researchers or operators for scanning of full-mouth upper jaw, while that in the control group may be used for full-mouth lower jaw and in the semi-mouth experiment, the scanning procedure of the experiment group may obtain the best result of image.

摘要……………………………………………………………………….i
Abstract…………………………………………………………………iii
誌謝………………………………………………………………………v
目錄……………………………………………………………………...vi
表目錄……………………………………………………………………x
圖目錄…………………………………………………………………...xi
第一章 緒論……………………………………………………………..1
1.1前言………………………………………………………………1
1.2研究動機與目的…………………………………………………3
1.3研究方法…………………………………………………………3
第二章 文獻探討………………………………………………………..4
2.1齒科數位化發展…………………………………………………4
2.2傳統印模…………………………………………………………5
2.3數位口內掃描機…………………………………………………6
2.3.1口內掃描機原理和優勢…………………………………..6
2.3.2數位口內掃描機簡介……………………………………13
2.3.3數位口內掃描機的分類…………………………………15
2.4桌上型掃描機…………………………………………………..17
2.4.1桌上型掃描機原理與優勢………………………………17
2.4.2桌上型掃描機簡介………………………………………20
2.5 3D列印技術……………………………………………………22
第三章 研究內容與方法………………………………………………23
3.1實驗用儀器及分析設計軟體………………………………….23
3.2實驗步驟……………………………………………………….25
3.3建構掃描檔案模型……………………………………………..28
3.4桌掃機與口掃機掃描檔案比對………………………………..30
3.5 3D列印應用分析………………………………………………31
3.6統計分析………………………………………………………..32
第四章 結果與討論……………………………………………………33
4.1實驗結果………………………………………………………..33
4.1.1口掃機與桌掃機全口誤差值分析………………………33
4.1.2口掃機與桌掃機半口誤差值分析………………………37
4.1.3口掃機操作時間與擷取圖像分析………………………38
4.1.4準確性(Precision)分析…………………………………...38
4.1.5 3D列印成品分析………………………………………..41
4.1.6 統計分析結果…………………………………………...42
4.2實驗討論………………………………………………………..47
4.2.1口掃機與桌掃機全口誤差值比較………………………47
4.2.2口掃機與桌掃機半口誤差值比較………………………48
4.2.3操作口掃機時間與擷取圖像比較………………………48
4.2.4準確性(Precision)分析比較……………………………..48
4.2.5 3D列印成品分析………………………………………..48
第五章 結論……………………………………………………………49
參考文獻………………………………………………………………..50
Extended Abstract……………………………………………………….57


[1]B. Kusnoto, and C. A. Evans, “Reliability of a 3D surface laser scanner for orthodontic applications,” Am J Orthod Dentofacial Orthop, vol. 122, no. 4, pp. 342-8, Oct, 2002.
[2]B. S. Rubel, “Impression materials: a comparative review of impression materials most commonly used in restorative dentistry,” Dent Clin North Am, vol. 51, no. 3, pp. 629-42, vi, Jul, 2007.
[3]T. A. Hamalian, E. Nasr, and J. J. Chidiac, “Impression materials in fixed prosthodontics: influence of choice on clinical procedure,” J Prosthodont, vol. 20, no. 2, pp. 153-60, Feb, 2011.
[4]D. J. Conny, L. A. Tedesco, J. D. Brewer, and J. E. Albino, “Changes of attitude in fixed prosthodontic patients,” J Prosthet Dent, vol. 53, no. 4, pp. 451-4, Apr, 1985.
[5]T. Hacker, G. Heydecke, and D. R. Reissmann, “Impact of procedures during prosthodontic treatment on patients' perceived burdens,” J Dent, vol. 43, no. 1, pp. 51-7, Jan, 2015.
[6]L. Joffe, “OrthoCAD: digital models for a digital era,” J Orthod, vol. 31, no. 4, pp. 344-7, Dec, 2004.
[7]M. F. Leifert, M. M. Leifert, S. S. Efstratiadis, and T. J. Cangialosi, “Comparison of space analysis evaluations with digital models and plaster dental casts,” Am J Orthod Dentofacial Orthop, vol. 136, no. 1, pp. 16 e1-4; discussion 16, Jul, 2009.
[8]N. Patel, “Integrating three-dimensional digital technologies for comprehensive implant dentistry,” J Am Dent Assoc, vol. 141 Suppl 2, pp. 20S-4S, Jun, 2010.
[9]N. Al Mortadi, D. Eggbeer, J. Lewis, and R. J. Williams, “CAD/CAM/AM applications in the manufacture of dental appliances,” Am J Orthod Dentofacial Orthop, vol. 142, no. 5, pp. 727-33, Nov, 2012.
[10]N. D. Kravitz, C. Groth, P. E. Jones, J. W. Graham, and W. R. Redmond, “Intraoral digital scanners,” J Clin Orthod, vol. 48, no. 6, pp. 337-47, Jun, 2014.
[11]M. G. Wiranto, W. P. Engelbrecht, H. E. Tutein Nolthenius, W. J. van der Meer, and Y. Ren, “Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions,” Am J Orthod Dentofacial Orthop, vol. 143, no. 1, pp. 140-7, Jan, 2013.
[12]S. B. Patzelt, A. Emmanouilidi, S. Stampf, J. R. Strub, and W. Att, “Accuracy of full-arch scans using intraoral scanners,” Clin Oral Investig, vol. 18, no. 6, pp. 1687-94, Jul, 2014.
[13]R. G. Luthardt, R. Loos, and S. Quaas, “Accuracy of intraoral data acquisition in comparison to the conventional impression,” Int J Comput Dent, vol. 8, no. 4, pp. 283-94, Oct, 2005.
[14]A. Syrek, G. Reich, D. Ranftl, C. Klein, B. Cerny, and J. Brodesser, “Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling,” J Dent, vol. 38, no. 7, pp. 553-9, Jul, 2010.
[15]S. J. Lee, and G. O. Gallucci, “Digital vs. conventional implant impressions: efficiency outcomes,” Clin Oral Implants Res, vol. 24, no. 1, pp. 111-5, Jan, 2013.
[16]P. Seelbach, C. Brueckel, and B. Wostmann, “Accuracy of digital and conventional impression techniques and workflow,” Clin Oral Investig, vol. 17, no. 7, pp. 1759-64, Sep, 2013.
[17]B. Gimenez, M. Ozcan, F. Martinez-Rus, and G. Pradies, “Accuracy of a digital impression system based on parallel confocal laser technology for implants with consideration of operator experience and implant angulation and depth,” Int J Oral Maxillofac Implants, vol. 29, no. 4, pp. 853-62, Jul-Aug, 2014.
[18]B. Gimenez, M. Ozcan, F. Martinez-Rus, and G. Pradies, “Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth,” Clin Implant Dent Relat Res, vol. 17 Suppl 1, pp. e54-64, Jan, 2015.
[19]P. Papaspyridakos, G. O. Gallucci, C. J. Chen, S. Hanssen, I. Naert, and B. Vandenberghe, “Digital versus conventional implant impressions for edentulous patients: accuracy outcomes,” Clin Oral Implants Res, vol. 27, no. 4, pp. 465-72, Apr, 2016.
[20]A. Ender, and A. Mehl, “Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision,” J Prosthet Dent, vol. 109, no. 2, pp. 121-8, Feb, 2013.
[21]S. B. Patzelt, S. Vonau, S. Stampf, and W. Att, “Assessing the feasibility and accuracy of digitizing edentulous jaws,” J Am Dent Assoc, vol. 144, no. 8, pp. 914-20, Aug, 2013.
[22]A. Ender, and A. Mehl, “In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions,” Quintessence Int, vol. 46, no. 1, pp. 9-17, Jan, 2015.
[23]F. Kuhr, A. Schmidt, P. Rehmann, and B. Wostmann, “A new method for assessing the accuracy of full arch impressions in patients,” J Dent, vol. 55, pp. 68-74, Dec, 2016.
[24]J. W. Anh, J. M. Park, Y. S. Chun, M. Kim, and M. Kim, “A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction,” Korean J Orthod, vol. 46, no. 1, pp. 3-12, Jan, 2016.
[25]F. Mangano, A. Gandolfi, G. Luongo, and S. Logozzo, “Intraoral scanners in dentistry: a review of the current literature,” BMC Oral Health, vol. 17, no. 1, pp. 149, Dec 12, 2017.
[26]F. Duret, J. L. Blouin, and B. Duret, “CAD-CAM in dentistry,” J Am Dent Assoc, vol. 117, no. 6, pp. 715-20, Nov, 1988.
[27]W. H. Mormann, M. Brandestini, and F. Lutz, “[The Cerec system: computer-assisted preparation of direct ceramic inlays in 1 setting],” Quintessenz, vol. 38, no. 3, pp. 457-70, Mar, 1987.
[28]W. H. Mormann, M. Brandestini, F. Lutz, and F. Barbakow, “Chairside computer-aided direct ceramic inlays,” Quintessence Int, vol. 20, no. 5, pp. 329-39, May, 1989.
[29]J. Katsoulis, R. Mericske-Stern, L. Rotkina, C. Zbaren, N. Enkling, and M. B. Blatz, “Precision of fit of implant-supported screw-retained 10-unit computer-aided-designed and computer-aided-manufactured frameworks made from zirconium dioxide and titanium: an in vitro study,” Clin Oral Implants Res, vol. 25, no. 2, pp. 165-74, Feb, 2014.
[30]A. S. Persson, A. Oden, M. Andersson, and G. Sandborgh-Englund, “Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness,” Dent Mater, vol. 25, no. 7, pp. 929-36, Jul, 2009.
[31]W. Renne, M. Ludlow, J. Fryml, Z. Schurch, A. Mennito, R. Kessler, and A. Lauer, “Evaluation of the accuracy of 7 digital scanners: An in vitro analysis based on 3-dimensional comparisons,” J Prosthet Dent, vol. 118, no. 1, pp. 36-42, Jul, 2017.
[32]F. Duret, “[Toward a new symbolism in the fabrication of prosthetic design],” Cah Prothese, vol. 13, no. 50, pp. 65-71, Jun, 1985.
[33]B. K. E. Taneva, and C. A. Evans, “3 D scanning, imaging, and printing in orthodontics,” Contemporary Orthodontics, pp. 147-188, 2015.
[34]E. M. Z. Silvia Logozzo, Giordano Franceschini, Ari Kilpelä, Anssi Mäkynen, “Recent advances in dental optics -Part I: 3 D intrazonal scanners for restorative dentistry,” Optics and Lasers in Engineering vol. 54, pp. 203-221, 2014.
[35]A. F. G. Pradíes, M. Özcan, B. Giménez, and F. Martínez-Rus, “Using stereophotogrammetric technology for obtaining intraoral digital impressions of implants,” Journal of the American Dental Association (1939), vol. 145, no. 4, pp. 338-344, 2014.
[36]J. Burgner, A. L. Simpson, J. M. Fitzpatrick, R. A. Lathrop, S. D. Herrell, M. I. Miga, and R. J. Webster, 3rd, “A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery,” Int J Med Robot, vol. 9, no. 2, pp. 190-203, Jun, 2013.
[37]B. K. Emilia Taneva, Carla A. Evans, “3D scanning, imaging, and printing in orthodontics,” Contemporary Orthodontics, vol. Chapter 9, pp. 147-188, 2015.
[38]R. Richert, A. Goujat, L. Venet, G. Viguie, S. Viennot, P. Robinson, J. C. Farges, M. Fages, and M. Ducret, “Intraoral Scanner Technologies: A Review to Make a Successful Impression,” J Healthc Eng, vol. 2017, pp. 8427595, 2017.
[39]P. H.-S. a. S. Chintal, “Development of high speed and high accuracy 3D dental intra oral scanner,” Procedia Engineering, vol. 100, pp. 1174-1181, 2015.
[40]A. B. O. Aubreton, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Machine Vision and Applications, vol. 24, no. 7, pp. 1513-1524, 2013.
[41]J. B. da Costa, F. Pelogia, B. Hagedorn, and J. L. Ferracane, “Evaluation of different methods of optical impression making on the marginal gap of onlays created with CEREC 3D,” Oper Dent, vol. 35, no. 3, pp. 324-9, May-Jun, 2010.
[42]S. B. Patzelt, C. Lamprinos, S. Stampf, and W. Att, “The time efficiency of intraoral scanners: an in vitro comparative study,” J Am Dent Assoc, vol. 145, no. 6, pp. 542-51, Jun, 2014.
[43]G. D. H. a. S. B. M. Patzelt, “Evaluation of the accuracy of six intraoral scanning,” Journal of the American Dental Association (1939), vol. 10, no. 4, pp. 1-5, 2015.
[44]T. Joda, and U. Bragger, “Patient-centered outcomes comparing digital and conventional implant impression procedures: a randomized crossover trial,” Clin Oral Implants Res, vol. 27, no. 12, pp. e185-e189, Dec, 2016.
[45]M. Zimmermann, A. Mehl, W. H. Mormann, and S. Reich, “Intraoral scanning systems - a current overview,” Int J Comput Dent, vol. 18, no. 2, pp. 101-29, 2015.

[46]P. Muller, A. Ender, T. Joda, and J. Katsoulis, “Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner,” Quintessence Int, vol. 47, no. 4, pp. 343-9, Apr, 2016.
[47]A. K. S. Logozzo, A. Mäkynen, E. M. Zanetti, and G. Franceschini, “Recent advances in dental optics - part II: experimental tests for a new intraoral scanner,” Optics and Lasers in Engineering, vol. 54, pp. 187-196, 2014.
[48]W. J. van der Meer, F. S. Andriessen, D. Wismeijer, and Y. Ren, “Application of intra-oral dental scanners in the digital workflow of implantology,” PLoS One, vol. 7, no. 8, pp. e43312, 2012.
[49]Z. Mao, K. Park, K. Lee, and X. Li, “Robust surface reconstruction of teeth from raw pointsets,” Int J Numer Method Biomed Eng, vol. 30, no. 3, pp. 382-96, Mar, 2014.
[50]T. Yuan, W. Liao, N. Dai, X. Cheng, and Q. Yu, “Single-Tooth Modeling for 3D Dental Model,” Int J Biomed Imaging, vol. 2010, 2010.
[51]C. H. Tzou, N. M. Artner, I. Pona, A. Hold, E. Placheta, W. G. Kropatsch, and M. Frey, “Comparison of three-dimensional surface-imaging systems,” J Plast Reconstr Aesthet Surg, vol. 67, no. 4, pp. 489-97, Apr, 2014.
[52]vcbeat, “口內掃描儀產業梳理:輔助醫生臨床診療方案制定,外企占絕對主流,” https://kknews.cc/zh-tw/health/vzegora.html, 2017.
[53]A. Puntillo, “Optical scanners: Eliminating impressions from your practice, lecture ” AAO annual sessio, New Orleans, 2014.
[54]T. A. Karl Hollenbeck, Mike van der Poel, “Dental Lab 3D Scanners– How they work and what works best,” 3Shape Technology Research, Copenhagen, pp. 1-5, 2012.
[55]G. S. Christoph Vogtlin, Kurt Jager, Bert Müller, “Comparing the accuracy of master models based on digital intra-oral scanners with conventional plaster casts,” Physics in Medicine, vol. 1, pp. 20-26, 2016.
[56] Gibson I., Rosen D.W., Stucker B., AdditiveManufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, New York, NY, 2009.
[57] “Standard terminology for additive manufacturing technologies,” ASTM F2792-12a, 2012.
[58] Sachs E., Cima M., Williams P., Brancazio D., Cornie J., Three dimensional printing. Rapid tooling and prototypes directly from a CAD model, J Eng Indus 1992, 114 (4): 481-488.
[59] Gbureck U., olzel T. H., Klammert U., urzler K.W., uller F. A. M, Barralet J. E., Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing, Advanced Functional Materials 2007; 17(18): 3940-3945.
[60] Bergmann C., Lindne M.r, Zhang W., 3D printing of bone substitute implants using calcium phosphate and bioactive glasses, J Eur Ceramic Soc 2010; 30(12): 2563-2567.
[61] Bourell D. L., Marcus H. L., Barlow J. W., Beaman J. J., Selective laser sintering of metals and ceramics, Int J Powder Metallurgy 1992; 28(4): 369-381.
[62] Gahler A., Heinrich J. G., unster J. G, Direct laser sintering of Al2O3-SiO2 dental ceramic components by layer-wise slurry deposition, J Amer Ceramic Society 2006; 89(10): 3076-3080.
[63] Waetjen A. M., Polsakiewicz D. A., Kuhl I., Telle R., Fischer H., Slurry deposition by airbrush for selective laser sintering of ceramic components, J Eur Ceramic Society 2009; 29(1): 1-6.
[64] Lindner M., Hoeges S., Meiners W., Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique, J Bio Mater Res A 2011; 97(4): 466-471.
[65] Doreau F., Chaput C., Chartier T., Stereolithography for manufacturing ceramic parts,” Adv EngMater 2000; 2(8): 493-496.
[66] Chartier T., Chaput C., Doreau F., Loiseau M., Stereolithography of structural complex ceramic parts, J Mater Science 2002; 37(15): 3141-3147.
[67] Leyland N. S., Evans J. R. G., Harrison D. J., Lithographic printing of ceramics, J Euro Ceramic Society 2002; 22(1): 1-13.
[68] Cicha K., Li Z., Stadlmann K., Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy, J App Phys 2011; 110(6): 1-5. Article ID 064911.
[69] Grida I., Evans J. R. G., Extrusion freeforming of ceramics through fine nozzles, J Euro Ceramic Society 2003; 23(5): 629-635.
[70] Bellini A., Shor L., Guceri S. I., New developments in fused deposition modeling of ceramics, Rap Prototyping J2005; 11(4): 214-220.
[71] Lewis J. A., Smay J. E., Stuecker J., Cesarano J., Direct ink writing of three-dimensional ceramic structures, J Amer Ceramic Society 2006; 89(12): 3599–3609.
[72] Sun K., Wei T. S., Ahn B. Y., Seo J. Y., Dillon S. J., Lewis J. A., 3D printing of interdigitated Li-ion microbattery architectures, Adv Mater 2013; 25(33) 4539–4543.
[73] Sukeshini A. M., Gardner P., Meisenkothen F., Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers, ECS Transactions 2011; 35(1): 2151–2160.
[74] Campbell I., Bourell D.,Gibson I.,Additive manufacturing: rapid prototyping comesofage. Rap Protot J. 2012;18(4):255-258.
[75] 莊傳勝, 林得耀, 戴維倫, 林敬智, 曾文鵬, 義齒先進數位化製造技術,. 短脈衝雷射加工機制與應用技術專輯2012; 347期 :95-96.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top